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Abstract—Reliable trajectory data are essential for biomechan-
ical and physiological studies conducted on variable outdoor
terrain. However, consumer-grade GNSS devices and synthetic
route planners often introduce spatial and vertical inaccuracies
that affect derived metrics. This study presents a reproducible
workflow for sub-meter trail mapping, tested on a 1 km mountain
trail segment on Mt Coot-tha, Australia. Five consumer GNSS
loggers (Garmin GPSMAP 67i, Coros Apex Pro II, Garmin
Fenix 5S, Garmin Vivoactive 5, iPhone 12 mini) were recorded
over six laps, then processed with resampling methods and
elevation correction approaches, including elevation imputation
from lidar-derived elevation models. Route-builder outputs from
popular online platforms served as synthetic benchmarks. The
dual-band GPSMAP 67i achieved maximum and mean 3D
separation of 2.7 m and 0.6 m respectively when filtered by
signal quality, outperforming any other scenario. Sub-meter
trail mapping is achievable with consumer dual-band GNSS,
RINEX data and detailed elevation data, while post-processing
cannot compensate for poor horizontal fixes. Virtually designed
routes should not replace high-quality empirical measurements
in human locomotion studies.

Index Terms—Global positioning system, Wearable sensors,
Data fusion, Geospatial analysis, Light detection and ranging

I. INTRODUCTION

Real-world locomotion research is indispensable. Mountain
terrain offers locomotor challenges that no treadmill or level
track can reproduce. Gradients shift from meter to meter,
surfaces alternate between scree, wet roots and hardpan,
and exposure changes with every switchback. These terrain
variabilities create what some authors describe as locomotor
complexity [1], a dynamic interaction between terrain features
and motor control demands that affects pacing, gait transitions,
and fatigue accumulation in ways that controlled platforms
deliberately suppress. Metrics such as sustained gradient,
terrain roughness, and curvature may also act as proxies for ec-
centric loading or neuromuscular strain, enabling terrain-level
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estimations of physiological cost [2]. Terrain variability elicits
measurable changes in gait mechanics and cardio-respiratory
responses during locomotion. Even a two percent change in
slope shortens stride length, raises oxygen uptake and alters
muscle activation patterns [3]. Field observations suggest that
small terrain changes trigger gait transitions and modulate
perceived exertion [4], [5]. Variables such as instantaneous
speed, local gradient, accumulated elevation gain, and surface
irregularity interact with individual characteristics, such as
aerobic capacity, technical proficiency, and pacing strategy,
to influence performance and potentially contribute to injury
risk [6], [7]. To properly quantify these terrain-induced effects
in real-world settings, accurate sensor-based measurement of
both locomotor dynamics and environmental context is essen-
tial. While foot pods and inertial measurement units (IMUs)
can reliably capture cadence, contact time, and segmental
motion, they cannot accurately infer mechanical workload
without precise terrain data, including slope and elevation pro-
file [8]. Furthermore, consumer-grade GNSS devices are prone
to signal drift under canopy cover or near cliffs; smartphone-
based positioning often amplifies horizontal error. Without
standardized spatial resolution, the complex topography of
natural trails can distort estimates of distance and cumula-
tive climb, thereby limiting biomechanical and physiological
inference [9], [10]. Coarse Digital Elevation Models (DEMs)
can introduce vertical errors exceeding 5 m in complex terrain
[11]–[14]. Even high-end sport watches exhibit discrepancies
of 3 - 9% in distance estimation, with even greater divergence
in total ascent calculations [15], [16]. Because on-device
smoothing and elevation correction are typically proprietary,
derived metrics, such as grade-adjusted pace and elevation
gain, may inherit hidden errors [16]. Studies comparing phys-
iological effort across hills or slopes should explicitly report
how distance and elevation gain were derived, corrected,
and validated. True three-dimensional distance accounts for
surface undulations and terrain features, unlike the geodesic
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two-dimensional chord length typically reported by GPS de-
vices [17]. This discrepancy constrains direct comparisons
between treadmill-based experiments (true 3D distance) and
field studies, which often rely on simplified geodetic approxi-
mations. Repeated GNSS surveys, high resolution lidar scans,
validated DEMs and open-positioning algorithms collectively
help constrain spatial uncertainty across all three dimensions
[18]–[20]. Relying on commercial or crowdsourced metrics
without independent validation introduces substantial risk of
systematic error. Crowd-sourced platforms such as Strava or
Garmin Connect often publish tracks that have been simpli-
fied, elevation-corrected using DEMs of unknown resolution,
and processed through undisclosed filtering algorithms. These
layered inaccuracies cascade into leaderboard rankings, pacing
plans and meta-analyses. Validation studies have reported con-
sistent offsets in speed, distance and cadence when compared
against reference systems [8]. In the absence of auditable and
reproducible course measurement standards, key metrics, such
as speed, gradient or mechanical power, cannot be reliably
compared across athletes, events or studies. Recent efforts
to address these measurement limitations generally follow
two main approaches. Large-scale analyses extract aggregate
patterns from millions of GNSS traces [21], [22]; however,
the averaging inherent in such methods tends to obscure the
fine-grained terrain variations that influence physiological cost.
Field-based studies, by contrast, map short loops [23], [24] or
entire trails with high-precision GNSS or lidar systems [18],
achieving centimeter-scale accuracy but requiring specialized
hardware and expertise. Other recent approaches have begun to
integrate barometric altimetry with differential GNSS, compar-
ing DEM resolutions across biomes, and experimenting with
context-aware normalization techniques [6], [25], [26]. Yet
despite these advances, a compact, openly documented, and
auditable pipeline remains absent. This study aims to develop a
transparent and replicable framework for accurately measuring
trail segments under real-world conditions. Specifically, we (i)
quantify the horizontal and vertical variability introduced by
five consumer-grade GNSS devices following a standardized
acquisition protocol; (ii) evaluate how sampling resolution and
elevation data source affect derived trajectory metrics such as
distance, slope, and elevation gain; and (iii) benchmark the
resulting pipeline against route profiles generated by widely
used online fitness platforms.

II. METHODS

A. Data Collection

The field measurement took place on a well-maintained
1 km trail segment in Mt Coot-tha (Brisbane, Australia).
Conditions were clear and calm (mean temperature 22 °C,
relative humidity 48%, no canopy drip), ensuring stable GNSS
reception. Six consecutive laps were completed along the exact
same route-already familiar to the lead researcher-to minimize
pacing and navigation variability. Figure 1 summarizes the full
workflow from acquisition to analysis.

Fig. 1. Methodological workflow. Boxes denote data sources, devices,
intermediate products and processing steps; arrows indicate information flow
from field acquisition to trajectory assessment.

Devices and Mounting: Five consumer-grade GNSS units
were evaluated: Garmin Fenix 5S, Garmin Vivoactive 5, Coros
Apex Pro II, Garmin GPSMAP 67i, and an iPhone 12 mini. All
loggers were secured on the top of a backpack, providing un-
obstructed sky view and eliminating wrist-movement artifacts.
Satellite-quality indicators were verified before every lap.

Recording Protocol: Each device stored GNSS positions
at 1 Hz (longitude, latitude, ellipsoidal height, timestamp).
The GPSMAP 67i simultaneously logged dual-frequency raw
observations and created RINEX v3.05 files for per-epoch
quality auditing. All coordinates were transformed to the WGS
84 / UTM zone 56 S projection prior to metric calculations.

Derived Variables:

• ∆λ, ∆φ - longitudinal and latitudinal increments.
• ∆h - elevation change.
• ∆d2D - surface-distance chord in 2D.
• ∆d3D - terrain-following 3D distance.
• Slope - instantaneous gradient (∆h/∆d2D).
• θturn - heading change between successive segments.

Terrain Data:

• Public DEMs - SRTM 1 arc-sec ( 30 m) tiles from AWS
Terrain, plus open-access local DEMs at 5 m and 1 m
grid spacing.
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• Lidar point clouds - Queensland Government surveys
from 2009 (2.8 pts/m2), 2014 (19.3 pts/m2) and 2019
(46.6 pts/m2).

All elevation models were re-projected to WGS 84 / UTM
56 S and resampled with bilinear interpolation to match the
horizontal resolution required by each analysis step.

GNSS ephemerides: Precise orbit and satellite clock
products for each measurement day were downloaded from the
Queensland Spatial Catalogue (QSpatial). QSpatial distributes
International GNSS Service (IGS) rapid ephemerides in SP3
format-providing satellite positions, velocities and clock cor-
rections at 15 min intervals-as well as 1 Hz satellite clock
corrections in CLK files. These products were time-matched
to the RINEX observation files recorded by the GPSMAP 67i
and ingested into the GNSS-processing pipeline to improve
satellite-position accuracy and mitigate broadcast-ephemeris
errors of up to ∼ 2 m in 3D.

B. Device-Induced Variability in GNSS Trajectories

We quantified the horizontal and vertical variability intro-
duced by five consumer-grade GNSS devices following an
identical protocol. We first computed reading-level metrics for
each pair of consecutive points: elevation change, geodetic
(2D) distance, true (3D) distance, and turn angle. Numer-
ical summaries and graphical visualizations were produced
for every device and processing stage. Next, the recorded
tracks were overlaid to enable visual inspection of spatial
discrepancies under identical environmental and operational
conditions. Then we assessed how device choice and platform-
based processing affect derived trajectory metrics such as
distance, slope, and elevation gain.

First we compare: (i) raw GNSS output; (ii) tracks processed
by Strava’s automatic track-sanitation service; and (iii) tracks
whose elevation values were replaced using Strava’s propri-
etary elevation-correction service.

a) Spatial consistency metrics: For each set of six tra-
jectories we computed, in both two and three dimensions:

• Hausdorff distance (dH ).

dH(A,B) = max
{
sup
a∈A

inf
b∈B

∥a− b∥, sup
b∈B

inf
a∈A

∥b− a∥
}
.

• Separation (dS).

dS(A,B) = median
{
sup
a∈A

inf
b∈B

∥a−b∥, sup
b∈B

inf
a∈A

∥b−a∥
}
.

• Metric Score (MS). Percentage of points whose nearest-
neighbor distance to the opposite trajectory is ≤ 1 m.

For every metric we reported the mean and the coefficient
of variation (CV%) across the fifteen pairwise comparisons in
each trajectory set.

b) Route-derived attributes: Consistency across rounds
was also assessed for:

• total 2D and 3D distance,
• elevation gain and loss,
• maximum and minimum elevation,
• mean slope and inter-quartile range,

• sinuosity (path length divided by straight-line distance),
• mean turn angle.

C. Impact of Sampling Resolution and Elevation Source on
Route Metrics

To address Objective 2, we evaluated how sampling resolu-
tion and elevation data influence derived trajectory metrics.

a) Spatial resolution resampling: We applied a uniform
arc-length parametrization to the raw GNSS data, a resampling
technique that redistributes vertices along each trajectory at
fixed chord lengths [9]. By decoupling the record from the
devices’ 1 Hz time-based sampling, this method enforces equal
geodesic spacing between successive points.

Trajectories were resampled at nine step sizes: 0.25, 0.5,
0.75, 1, 1.5, 2, 3, 4 and 5 m. For every resolution the following
attributes were recomputed:

• total 2D and 3D distance
• sinuosity and mean turn angle
• mean slope and slope inter-quartile range
• cumulative elevation gain and loss
Comparing these outputs across scales reveals which metrics

are most sensitive to horizontal sampling and quantifies the
fractal behavior inherent in trail-running trajectories.

b) DEM Source and Resolution: We then analyzed two
families of Digital Elevation Models (DEMs) to quantify the
effect of vertical resolution on elevation-driven metrics.

• Public raster DEMs: open SRTM dataset resampled
bilinearly to grid spacings of 0.25, 0.5, 1, 2, 4, 8, 16,
and 32 m.

• Lidar-derived DEMs: airborne lidar point clouds from
the 2009, 2014, and 2019 Queensland campaigns, raster-
ized via a TIN interpolation.

All GNSS raw trajectories were first resampled to a uniform
1 m horizontal step to mitigate the fractal complexity dis-
tortion. Standardized trajectory elevations were then replaced
with the heights extracted from each DEM under test. The
following elevation-dependent metrics were recomputed:

• total elevation gain and loss
• maximum and minimum elevation
• mean slope and slope inter-quartile range
• total 3D path length
Comparing these outputs across grid sizes and data sources

highlights which DEM configurations yield the most consistent
elevation-driven metrics while balancing processing cost and
data availability.

D. Benchmarking Best-Practice Pipeline Against Online
Route Builders

To address Objective 3, we benchmarked the standardized
field-measured tracks against five routes generated by popular
online platforms.

For every epoch, east, north and vertical standard deviations
were extracted from the RINEX logs and precise ephemerides,
then combined into a single 3D uncertainty:
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σ3D(t) =
√
σ2
E(t) + σ2

N (t) + σ2
V (t),

where σE(t), σN (t) and σV (t) denote the east, north and
vertical standard deviations at epoch t.

Two GPSMAP 67i trajectories with the lowest positional
uncertainty served as references, each maintaining σ3D < 0.45
m across 100% of epochs.

These two reference tracks were compared against all
other measurements from the same device, as well as against
all routes generated by the platforms. Platform routes were
downloaded from AllTrails, Garmin Connect, Trail Router, and
Strava (automatic and manual heat-map modes). All datasets
were projected to WGS 84 / UTM zone 56 S, resampled at 1
m spacing, and assigned elevation values from the 1 m 2019
lidar DEM.

Spatial fidelity was assessed with:
• total 3D length difference,
• mean absolute separation,
• 3D Hausdorff distance,
• cumulative elevation-gain and -loss error,
• mean-slope bias and inter-quartile range.
These comparisons quantify how closely platform-generated

routes replicate the geometry and elevation profile of the best
available field data.

III. RESULTS

Figure 2 summarises segment-wise variability for four met-
rics under three processing modes (Raw, Strava slope sanitiser,
Strava elevation correction). The GPSMAP 67i shows the tight-
est dispersions, whereas the iPhone 12 mini and Vivoactive
5 display wider spreads, especially in ∆Elevation and turn
angle. Integer-rounded heights in several watches introduce
±1 m steps that mask raw slope variability. Strava elevation
correction compresses vertical dispersion but leaves planar
metrics unchanged, confirming altitude-only adjustment.

Raw trajectory overlays (Figure 3) reinforce these findings:
GPSMAP 67i and iPhone traces overlap almost perfectly, while
Apex Pro II and Vivoactive 5 drift, notably on curves and
low-elevation sections.

Fourteen aggregated metrics (Figure 4) show that slope
sanitization lowers the CV of elevation gain/loss for all de-
vices; DEM-based correction tightens these metrics further and
reduces 3-D separation in four of the five devices, yet leaves
horizontal distances virtually unchanged. Mean slope is stable,
but its IQR widens after correction due to the finer vertical
detail injected from the DEM. Device sensitivity diverges:
GPSMAP 67i remains largely unaffected, whereas the iPhone
experiences the largest relative shifts.

Resampling analysis (Figure 5) reveals that 2-D/3-D lengths
stay flat below the native 1 m spacing and decline monotoni-
cally at coarser intervals. Elevation gain varies by ∼ 8%; slope
IQR peaks at 1–2 m, indicating maximal terrain expressiveness
at that scale. Sinuosity and turn angle decrease steadily with
step size.

Fig. 2. Reading-wise distributions of four differential metrics by device
and processing mode. Heatmaps indicate relative frequency, box plots show
quartiles and median, and black dots denote outliers.

DEM resolution effects (Figure 6) are pronounced for public
rasters but negligible for lidar surfaces. Resampled public
DEMs underestimate elevation gain by up to 12 m and collapse
slope variability at coarse grids, while lidar-derived metrics
remain stable from 0.25 m to 30 m.

Benchmarking (Figure 7) confirms empirical tracks outper-
form synthetic routes. Best Rounds achieve 3-D Hausdorff 2.7
m, mean separation 0.6 m and Metric Score 88 %. The best
device averaged over six laps yields Hausdorff 5 m and Metric
Score 31 %. Route Builder tracks exceed 30 m Hausdorff and
fall below 3 % Metric Score, underestimating elevation gain by
up to 12 m even after DEM correction. These gaps highlight
the limited geometric fidelity of virtual route planners.

IV. DISCUSSION

This study set out to determine how device choice, process-
ing workflow and spatial resolution influence the accuracy of
trail-running trajectories. Several studies have documented the
spatial inaccuracies of consumer-grade GNSS devices under
real-world conditions, with reported errors in total distance
and elevation gain ranging from 3-9% [15], [16]. Our results
reinforce these findings by demonstrating that even under ideal
reception, substantial variation persists across devices and met-
rics. However, unlike prior studies that relied on single-mode
comparisons or limited device types, this work systematically
benchmarks five devices across multiple processing pipelines
and reference elevations, highlighting the conditions under
which sub-meter repeatability is achievable.

Segment-wise analyses (Figure 2) revealed a clear perfor-
mance hierarchy. The GPSMAP 67i achieved sub-meter re-

Authorized licensed use limited to: University of Queensland. Downloaded on December 30,2025 at 20:56:26 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. Raw trajectories captured by five GNSS devices over six repeated laps,
colored by absolute elevation. Each panel combines the six laps of a single
device. The warm-to-cool gradient represents elevation in meters above sea
level, allowing simultaneous visual comparison of horizontal dispersion and
vertical profile.

Fig. 4. Mean values and coefficients of variation (CV%) in parentheses for 14
trajectory metrics, computed for five GNSS devices under three processing
modes. Cell shading expresses each CV as a percentage of the full range
observed for that metric; lighter blues denote higher relative mean.

peatability (Hausdorff 2.7 m; separation 0.6 m), whereas wrist-
and phone-based loggers displayed wider spreads, particularly
in turn angle and ∆Elevation. Integer-rounded heights in some
watches produced artificial zero-slope segments, inflating ver-
tical noise. These findings confirm an intrinsic quality gap
among consumer units that no post-processing can fully erase.

Fig. 5. Sensitivity of derived trajectory metrics to spatial resampling. Lines
show the mean per device at each fixed interval; vertical bars mark mean ±
standard deviation of native GNSS spatial resolution.

Below the native spacing of 1.1 ± 0.4 m, additional
densification yields negligible new information. Above 2.5
m, total length, sinuosity and turn angle diverge markedly
across devices (Fig. 5). Slope descriptors never fully stabilize,
indicating that fractal effects persist until complemented by a
high-resolution DEM.

Lidar-derived DEMs produced nearly flat response curves
across all resolutions (Fig. 6). Public rasters, when merely
resampled, underestimated elevation gain by up to 12 m and
collapsed slope IQR beyond 5 m. A smaller grid suffices to
stabilize slope IQR; total 3D length converges by 1 m. You
can’t beat good data: deriving surfaces directly from point
clouds is preferable to resampling coarse rasters.

Route-builder tracks exhibited Hausdorff distances >30 m
and Metric Scores <3 %, far behind the best rounds (Fig. 7).
A single well captured field measurement outperformed both
the best-device average and all platform outputs.

Next steps include: (1) extending the protocol to longer,
multi-biome trails; (2) testing vendor-provided raw GNSS
(RINEX) once smartwatch manufacturers expose it; and (3)
integrating real-time kinematic (RTK) corrections to examine
whether centimeter-level accuracy translates into meaningful
biomechanical insights.
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Fig. 6. Effect of DEM source and grid spacing on elevation metrics. Left:
Lidar-derived surfaces; right: public rasters resampled to the same spacings
(0.25-30 m, log-scale). Lines represent individual DEMs

By combining open RINEX logging, raw DEM evaluation
and resolution-sensitivity testing, this study offers a fully trans-
parent workflow that can be replicated, audited, and extended.
This contributes to ongoing efforts to build validated geospatial
baselines for locomotion research, where terrain metrics like
true 3D distance or slope variability are increasingly linked to
physiological modeling and wearable data integration.

To our knowledge, this is the first openly documented
workflow that combines (i) dual-frequency surveying, (ii)
resolution-sweep analysis and (iii) DEM source comparison
within one reproducible pipeline. The benchmark results es-
tablish practical targets: Hausdorff <3 m, separation <1 m,
for future locomotion studies.

The results of this study must be interpreted considering
certain limitations. Data collection was limited to a single
researcher performing six repeated laps on a 1 km trail under
ideal GNSS conditions, prioritizing control and repeatability
over generalization. No statistical inference or sample size
estimation was conducted; results are based on descriptive
metrics and spatial comparisons. The evaluated devices reflect
common consumer-grade hardware, but the roster was not
exhaustive and did not include professional survey receivers
(e.g., dual-frequency RTK/PPK rovers or total-station-grade

Fig. 7. Metric comparison for: Best Rounds, Best Device (GPSMAP 67i, all
laps), and Route Builders (five online platforms). Cells show mean value with
CV % in parentheses; blue shading indicates relative deviation within the full
observed range. Metrics are reported for raw tracks, 1 m-sanitized tracks, and
1 m-sanitized + lidar-DEM tracks.

instruments) that could set an even tighter ground-truth bench-
mark. The test course was a single 1 km loop segment; results
may differ on longer routes, in deep canyons, or in dense forest
where satellite geometry is poorer. As such, findings should be
interpreted as a benchmark of relative device and processing
performance under controlled conditions.

A. Conclusions

High-quality data, an appropriate device and a transparent
processing chain together enable repeatable, sub-meter trail
measurements. However, achieving full ecological validity
in human movement studies will require combining detailed
terrain models with complementary technologies that capture
physiological and biomechanical signals (e.g., heart rate, oxy-
gen consumption, gait cycle), as well as exploring analytical
frameworks that leverage wearable sensors and predictive
modeling [27]. Beyond biomechanics, precise terrain mapping
holds value for mountain sport science, military applica-
tions, environmental risk assessment, and public health initia-
tives that promote trail-based physical activity. A transparent
geospatial baseline allows these fields to make consistent
comparisons and informed decisions.
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