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putational complexity while controlling for the modifiable areal unit problem (MAUP), spatial autocorrelation
and attribute multicolinearity. Nevertheless, these effects can reveal significant interactions among diverse
spatial phenomena, such as segregation and economic specialization. Various regionalization methods have
been developed in order to address these questions, but key fundamental properties of the aggregation of spatial
entities are still poorly understood. In particular, due to the lack of an objective stopping rule, the question of
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Spatial clustering determining an optimal number of clusters is yet unresolved. Therefore, we develop a clustering algorithm
MAUP which is sensitive to scalar variations of multivariate spatial correlations, recalculating PCA scores at several

aggregation steps in order to account for differences in the span of autocorrelation effects for diverse variables.
With these settings, the scalar evolution of correlation, compactness and isolation measures is compared
between empirical and 120 random datasets, using two dissimilarity measures. Remarkably, adjusting several
indicators with real and simulated data allows for a clear definition of a stopping rule for spatial hierarchical
clustering. Indeed, increasing correlations with scale in random datasets are spurious MAUP effects, so they
can be discounted from real data results in order to identify an optimal clustering level, as defined by the
maximum of authentic spatial self-organization. This allows singling out the most socially distressed areas in
Greater Santiago, thus providing relevant socio-spatial insights from their cartographic and statistical analysis.
In sum, we develop a useful methodology to improve the fundamental comprehension of spatial interdepen-
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dence and multiscalar self-organizing phenomena, while linking these questions to relevant real world issues.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The appropriate definition of spatial boundaries is a major challenge
in geographic analysis (Duque, Anselin, & Rey, 2012; Gehlke & Biehl,
1934; Guo, 2008; Openshaw & Taylor, 1979). Besides its computational
complexity, this task must consider a combination of three interdepen-
dent spatial effects. These are the ‘Modifiable Areal Unit Problem’
(MAUP), spatial autocorrelation and local coproduction of different
attributes, which leads to multicolinearity (Anselin, 1995; Lefebvre,
1974; Openshaw & Taylor, 1979). Rather than considering these topo-
logical effects as error sources, we sustain that they provide relevant
information about spatial patterns and self-organizing social phenome-
na. Segregation processes offer a good example of these issues, being
self-sustaining dynamics that involve correlated attributes which are
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locally reinforced (Massey & Denton, 1988). Moreover, segregation
measures are strongly affected by the scale of data aggregation,
potentially leading to severe biases when comparing cities of different
sizes (Krupka, 2007). The case of Greater Santiago (GS) provides a
conspicuous illustration of the historical production of cumulative
socio-spatial inequalities at a metropolitan scale (De Mattos, 2002;
Hidalgo, 2007). However, the complexity of these interactions hampers
the identification and hierarchisation of the most critical areas, as well
as the scale of their strongest multiple correlations.

Regionalization, understood as a method for partitioning space in
homogeneous and geographically continuous zones, is a convenient
strategy to address the aforementioned issues. Remarkably, just before
providing a rigorous analysis of MAUP (Openshaw & Taylor, 1979),
Openshaw (1977) developed a spatially constrained hierarchical
algorithm, explicitly stating the relationship between aggregation
biases and optimal-zone design. However, most of prior and subsequent
research on regionalization has been focused on the development and
improvement of a wide variety of algorithms without a proper clarifica-
tion of this important question (Berry, 1961; Duque, Ramos, & Surifiach,
2007; Guo, 2008; Lankford, 1969; Monmonier, 1973; Mu & Wang, 2008;
Openshaw & Rao, 1995; Perruchet, 1983). Therefore, in this work we
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highlight the relevance of MAUP and spatial correlations for a better
understanding of regionalization methods.

In particular, our main objective is to define an optimal level of
analysis for hierarchical regionalization methods, comparing the
aggregation behaviors of empirical and random datasets. In fact, the
increase of correlation coefficients with scale which is observed in
spatial clustering with random data is a spurious effect, which can be
discounted from observations with empirical data in analogous settings.
This allows singling out an optimal level of analysis, defined by a
maximum of authentic spatial self-organization, leading to an accurate
diagnostic of socially distressed zones in GS. Thus, a second goal of
this work is to develop a cartographic and statistical description of the
most critical areas in this city, at the most appropriate analytical scale.

In order to address these questions, we have developed a hierarchi-
cal regionalization algorithm designed for parallel bottom-up hierarchi-
cal clustering from local minima, in iterative steps that construct
successive scale levels. As it is convenient for this work's purposes, we
have simplified and extended Mu and Wang's (2008) algorithm, provid-
ing results that allow designing a strategy to address the fundamental
question of determining an optimal number of clusters in hierarchical
regionalization.

This article is organized as follows: examination of the relationships
among MAUP, spatial autocorrelation and multicolinearity; revision and
classification of regionalization methods; description of a spatial
clustering algorithm; determination of an optimal level of analysis;
cartographic social diagnosis in GS, focusing on the optimal analysis
level; and a discussion of the main findings and research perspectives.

2. Theoretical and methodological background
2.1. Spatial properties and the dilemma of boundary definitions

Geographic space is a dynamic matrix which can reinforce natural or
social phenomena which take place in it and their interactions
(Lefebvre, 1974). Thus, general assumptions of statistical independence
do not hold in geographic analysis, mainly due to spatial autocorrelation
and local multicolinearity. Auto-correlated variables can be self-
organized into systematic patterns, as local attributes influence the
reproduction of the same phenomenon in neighboring areas (Anselin,
1995; Getis & Ord, 1992; Goodchild, 1986). For example, the arrival of
high income residents usually contributes to an escalation of real estate
prices in a neighborhood, increasing the odds for low income residents
to leave (Smith, 2002). Local multicolinearity arises when different
attributes are coproduced or are mutually interdependent. For example,
unemployment tends to reduce income and can be related to higher
crime rates, which may stigmatize neighborhoods, restricting job access
and thus generating a vicious circle (Galster, 2012). In sum, spatial
attributes can be influenced by themselves and by correlated variables,
biasing statistical analysis and generating spurious regression
coefficients (Lauridsen & Mur, 2006; Mur, Lépez, & Herrera, 2010,
Openshaw & Taylor, 1979).

These issues are known since Gehlke and Biehl's (1934) seminal
work and were systematically analyzed by Openshaw and Taylor
(1979), who coined the term MAUP. In fact, “when data are gathered
according to different boundary definitions, different data sets are gen-
erated. Analyzing these data sets will likely provide inconsistent results”
(Wong, 2004:571). This problem arises either if different entities are
modified while maintaining a similar size - the zoning effect - or if
smaller units are aggregated into larger units — the scale effect. Both
aspects of MAUP are intertwined with spatial autocorrelation and local
multicolinearity. Indeed, an auto-correlated variable may present high
average values in a small unit that contains a local concentration,
while being diluted in a larger area, leading to a scale effect. Besides,
two overlapping units of the same scale, one fully encompassing a
local concentration and the other containing just a portion of it, would
have different densities of the same variable, a zoning effect. Both

observations also hold for a set of correlated variables, thus producing
multivariate MAUP effects through local multicolinearity. In sum, a the-
oretical connection exists between spatial interactions and the statisti-
cal inconsistencies produced by MAUP.

This brief account highlights the relevance of developing methods to
design optimal zones for the geographic analysis of any set of variables
(Duque et al., 2007; Guo & Wang, 2011; Mu & Wang, 2008). Particularly,
the measurement of segregation and related urban phenomena is very
sensitive to the spatial definition of statistical aggregates, as neighbor-
hoods may be well represented by entities such as census tracts in
some cases, while being inadequately mingled in others (Krupka,
2007). Thus, the definition of homogeneous areas can be useful to pro-
duce more accurate estimates of diverse spatial indicators (Spielman &
Folch, 2015), while revealing patterns of spatial autocorrelation and
local multicolinearity. Reciprocally, the analysis of self-organizing
spatial phenomena is fundamental to understand the behavior of spatial
clustering algorithms. In order to situate this work in this research field,
the main approaches to regionalization will be reviewed in the next
section.

2.2. Classified review of regionalization methods

Regionalization is as a process of space partitioning in homogeneous
and geographically continuous zones, through the optimization of an
objective function under constraints, while guaranteeing that each
elementary entity is unambiguously assigned to one zone (Guo &
Wang, 2011; Openshaw & Rao, 1995). Besides being appropriate to
address the MAUP, these methods are useful for optimal zonal design,
improving spatial data aggregation for anonymity, for the statistical
significance of the collected information, for spatial data mining or for
an adequate cartographical representation (Duque et al., 2007;
Openshaw, 1977, Pilevar & Sukumar, 2005; Spielman & Logan, 2013).

Actually, regionalization is a particular case of spatial clustering,
which stems from general data clustering methods. Several statistical
approaches have been adapted to spatial clustering, without satisfying
regionalization constraints. Two-step procedures generate homoge-
neous groups through statistical clustering and then assemble the con-
tiguous units from the same types, usually producing fragmented
aggregates (Fischer, 1980; Openshaw, 1973). Standard clustering algo-
rithms have been applied to spatial entities, combining their geographic
coordinates with other attributes, thus increasing the heterogeneity of
the clusters or tending to produce circular regions (Murray & Shyy,
2000; Webster & Burrough, 1972). Henriques, Bacao, and Lobo (2012)
propose an interesting variation of these approaches using Kohoonen
neural maps, and subsequent treatment of their output space can
improve the results (Feng, Wang, & Chen, 2014). Density-based and
grid-based algorithms aggregate points or areas which are contained
under a suitable density threshold (Hartigan, 1975; Pilevar &
Sukumar, 2005; Sander, Ester, Kriegel, & Xu, 1998). These methods are
able to detect arbitrarily shaped clusters, but they are very sensitive to
the selected threshold (Kriegel, Kroger, Sander, & Zimek, 2011) and a
proportion of the observations may be classified as outliers.

Recent works have developed interesting approaches to spatial clus-
tering, considering multiscalar context measures around singular loca-
tions. Spielman and Logan (2013) use individual data of a nineteenth
century census to elaborate profiles describing ethnical and socioeco-
nomic variations with distance, around each person. Then, each location
is assigned a probability of belonging to six classes through a model-
based clustering procedure, allowing the definition of neighborhoods'
cores and edges. Clark, Anderson, Osth, and Malmberg (2015) provide
a detailed description of Los Angeles' changing segregation patterns,
measuring racial composition in increasing scale aggregates around
individual locations, performing factor analysis of these multiple
measurements and clustering blocks in 20 categories, depending on
homogeneity and ethnicity. These approaches provide rich substantial
descriptions of urban phenomena, but their capacity to identify
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geographical patterns depends heavily on the spatial autocorrelation of
the variables under study.

Regionalization algorithms differ from the aforementioned methods
by their capacity to produce a complete spatial partitioning with
geographically continuous clusters. This goal is attained through
neighborhood constraints over the aggregation process (Openshaw,
1977). Considering strictly contiguous entities, rook neighbors are the
ones that share one edge and queen neighbors include the former plus
pairs that only share one point of their perimeters (Mu & Wang, 2008;
Perruchet, 1983). More flexible neighbor definitions can be implement-
ed through distance thresholds (Perruchet, 1983; Sander et al., 1998).
Two main neighborhood-constrained approaches have been developed:
partitioning and hierarchical regionalization (Berkhin, 2006; Guo,
Peuquet, & Gahegan, 2003).

Partitioning regionalization algorithms extend methods akin to
k-means clustering (Hartigan & Wong, 1979), aiming to divide a data
set into a predefined number of groups, while optimizing an objective
function (Openshaw & Rao, 1995; Duque et al., 2012). Initial feasible
solutions can be elaborated through random zoning or from a set of
seeds, to which neighboring areas are reallocated or added until a
predefined criterion is satisfied (Nagel, 1965; Openshaw, 1977). As
checking all possible aggregate combinations is computationally
infeasible in large datasets, these methods rely on exact optimization
approaches or on a variety of heuristics - such as local search, simulated
annealing and tabu search - in order to find an optimal solution (Duque
et al,, 2007; Guo & Wang, 2011). A great diversity of algorithms® have
been proposed for partitioning regionalization, progressively improving
accuracy and computational efficiency (Duque, 2004; Nagel, 1965;
Openshaw, 1977; Openshaw & Rao, 1995; Vickrey, 1961). Duque et al.
(2012) have proposed an interesting alternative to the arbitrary defini-
tion of a number of clusters, substituting this parameter with a popula-
tion threshold, thus circumventing the optimal scale definition problem
rather than resolving this issue. An extension of this approach has also
proven to be a useful procedure to aggregate regions in order to im-
prove the accuracy of survey data estimates (Spielman & Folch, 2015).
However, as partitioning methods rely on arbitrarily predefined num-
bers of regions or population thresholds, this approach does not allow
efficiently addressing the question of determining an optimal scale or
number of clusters.

Hierarchical regionalization algorithms generate a nested chain of
spatially contiguous clusters - which can be represented as a tree or a
dendrogram -, while optimizing an objective global function akin to
Ward's (1963) method, or following local optimization criteria based
on different measures of similarity (Carvalho, Albuquerque, Almeida,
& Guimaraes, 2009; Lankford, 1969). These methods can either adopt
a bottom-up strategy, aggregating units towards an all-encompassing
region, or a top down approach, subdividing one area into smaller sub-
sets (Monmonier, 1973). Bottom-up aggregation is most commonly
used, joining the two contiguous units that either minimize the total
heterogeneity increase, other objective functions (Openshaw, 1973),
or those which contain the most similar neighbors (Lankford, 1969).
Several local similarity criteria have been described (Carvalho et al.,
2009; Guo, 2008). Single linkage joins the clusters that contain the
most similar pair of basic units, tending to produce heterogeneous
groups which are linked by a series of close pairs. Complete linkage is
focused on the most different units between two clusters, generating
aggregates where all observations are similar to each other, while
being strongly affected by outliers. Average linkage considers the
average dissimilarity of all cross-cluster pairs of units, being less biased

2 Duque et al. (2007) provide an exhaustive review of partitioning regionalization
methods.

3 Theoretically, this could be done through repeated partitioning tests at every aggrega-
tion level, but the computational cost would be enormous with large datasets, compared
to the nested multiscalar structure that can be produced by a single run of hierarchical
algorithms.

by outliers and having better performance than single and complete
linkage (Carvalho et al., 2009).

As this work aims to identify an optimal analysis level, we have
focused on hierarchical regionalization, because it produces nested
solutions at different scales. However, this approach has two important
drawbacks (Berkhin, 2006). First, there are no clear rules to determine
an optimal number of clusters, which is precisely the problem we aim
to resolve from a scalar perspective. Second, solutions at higher scales
are dependent on the mergers which have been performed in previous
steps, which can lead to suboptimal configurations. Mu and Wang
(2008) have developed a regionalization algorithm that can attenuate
this problem, as it works by parallel aggregation from a set of local
seeds defined by a local minima criterion. When all of the units have
been assigned to a cluster they are merged in order to form a new
layer, iterating this process until it converges in one unit. In such a
way, dependence on prior decisions is limited to the lineage of each
cluster and is independent from distant local aggregates. Moreover,
Mu & Wang introduce a variant of average linkage, using factor analysis
to synthetize multiple attributes in a score that defines dissimilarity
among units. This procedure and other PCA-based variants are
particularly useful to calculate dissimilarities with spatially correlated
variables, because they are designed to control for multicolinearity
(Abdi & Williams, 2010; Spielman & Folch, 2015; White, Richman, &
Yarnal, 1991).

Hybrid hierarchical and partitioning regionalization algorithms
follow a connect-and-divide strategy, generating a contiguity-
constrained hierarchical clustering graph and then performing a top-
down partitioning of this structure (Guo, 2008; Guo & Wang, 2011).
The hierarchical step allows the efficient integration of a contiguity
constraint, reducing the computational complexity of the following pro-
cedures. Then the partitioning process optimizes an objective function,
such as total sum of squared differences, and can introduce additional
constraints, such as a minimum population. This combination improves
the efficiency and accuracy of the regionalization process (Guo & Wang,
2011), but it does not resolve the question of determining an optimal
number of clusters.

In sum, considerable progress has been made on improving region-
alization methods, particularly for optimizing space partitioning into a
given number of regions or regions of a given size, addressing the
MAUP zoning problem. However, the question of determining the best
scale of analysis remains unsolved, so there is no clear strategy to cope
with the MAUP scale effect. This is a general problem of all clustering
methods, statistical and spatial, and we suggest a neat solution for the
latter cases. Relevant non-spatial approaches to this question will be
discussed in the next section.

2.3. Determination of an optimal scale or number of clusters

In general, cluster analysis aims to classify large sets of observations
into groups that are internally homogeneous while maximizing the
differences among groups (Califiski & Harabasz, 1974; Krzanowski &
Lai, 1988). However, from this intuitive definition it is rather difficult
to implement an objective stopping rule - understood as a definition
of the optimal number of partitions - and a great variety of procedures
have been proposed (Milligan & Cooper, 1985).

Typically, in hierarchical clustering the average of any intra-group
dispersion measure decreases as the number of groups increases
(Tibshirani, Walther, & Hastie, 2001). Plotting this ratio usually leads
to a curve with two different sections: a steep slope for small numbers
of clusters and a rather flat descent for higher numbers (Salvador &
Chan, 2004). The transition between slopes is called the ‘knee’, which
is vaguely considered as an indicator of the best number of clusters
(Thorndike, 1953), because a higher number of partitions would divide
homogeneous clusters, while a lower number of divisions would join
heterogeneous groups. However, this ‘knee’ is not always apparent
and several methods aim to identify it, such as comparing differences,
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Fig. 1. Logical model of a local-hierarchical regionalization algorithm. Source: authors.

ratios or second derivatives of heterogeneity gains between successive
aggregations, intersecting fitted lines or identifying distant points
from fitted curves (Krzanowski & Lai, 1988; Milligan & Cooper, 1985;
Salvador & Chan, 2004). Nevertheless, these methods are solely based
in the internal homogeneity of the clusters, while other relevant param-
eters should be considered.

In a broad Monte Carlo evaluation of 30 stopping rules, Milligan and
Cooper (1985) identified a procedure developed by Califiski and
Harabasz (1974) as the best performer. These authors identify an opti-
mal number of clusters through the highest value of the ratio
[(trace B) / (k-1)]/[(trace W)/ (n-k)], where B represents between
groups heterogeneity, W is the total within groups heterogeneity, k is
the number of partitions and n is the total number of items. Thus, this
index searches a balance between a maximum of isolation among
clusters and their minimum internal heterogeneity. Furthermore,
Tibshirani et al. (2001) show that, even for simulated data with no
group structure, clustering processes are able to generate spurious
groups. Thus, they develop a “gap statistic”, identifying the optimal
number of partitions by the maximum reduction of the observed within
group heterogeneity compared to its expected value with a null distri-
bution (Tibshirani et al., 2001).

These issues have not been properly researched in the context of
spatial clustering, although MAUP effects certainly have a strong impact
on aggregation measures. A proper method to identify an optimal scale
of regionalization should consider between and within group heteroge-
neity, while controlling for spurious correlations. This question will be
addressed in the fourth section of this article, after describing the re-
gionalization algorithm and the dataset which will be used in the corre-
sponding experiments.

3. Methodology
3.1. A local-hierarchical regionalization algorithm

Building on Mu and Wang's (2008) approach, we develop a simpler
local-hierarchical regionalization algorithm with two relevant modifi-
cations: a more flexible neighbors' definition and a recalculation of or-
thogonal scores at each scale. These adjustments will be explained
within a brief general description of the clustering process (Fig. 1).

Starting at block level, a set of neighbors is defined for each unit i€l
— I'being the set of entities at any level, generating a binary matrix that
defines the aggregation constraint. Blocks are the smallest urban areas
separated by streets and their perimeters are irregular shapes, so it is
unfeasible to use shared-borders procedures. Thus, we define as
neighbors all the entities which have any pair of points of their
perimeters under a distance threshold (Perruchet, 1983), which starts

at 20 m.? This distance reaches over standard GS streets but remains
under the span of the smallest blocks, thus preventing to assign non-
immediate neighbors. This threshold is proportionally increased to-
wards higher scales, attaining a maximum span of 72 m, reaching over
the widest avenues, rivers and other topographical barriers. Thus, a re-
alistic neighborhood constraint is implemented, as adjacency criteria
evolves with scale.

The attributes of each unit (Table 1) are normalized and processed
by principal component analysis (PCA), obtaining a set of K partial
scores (s;) for each entity i. These orthogonal vectors preserve informa-
tion while controlling for multicolinearity, allowing for an optimal
differentiation among units (Abdi & Williams, 2010; Cutter, Boruff, &
Shirley, 2003). The eigenvalue of each score k accounts for a proportion
pr of the total variance among units. As we have selected a set of
positively correlated variables (Table 1), each unit can be characterized
by an aggregated social distress score (SDS;) which is an eigenvalue-
weighted sum of partial scores:

K
SDS; = IZI Pk Ski
k=

Likewise, the dissimilarity among 2 neighbors i and j can be mea-
sured as a multidimensional distance of scores which can be calculated
either as a sum of absolute (absDSj;) or squared (sqrDS;) score
differences (SDS is written as S, for simplicity):

K K
absDS;; = ’lek abs(sy — Sjt) sqrDS;; = kZ] Pr(Sik — sjk)2
k= -

Both difference definitions have been tested for the GS, and each
produces a different aggregation behavior, as will be detailed in
Section 4.1. The multidimensional distances between a unit and each
of its neighbors are averaged in order to obtain a local similarity index
(aDS;), which allows ranking all units from the most locally similar to
the most locally dissimilar:

I
aps, — =11 DS

! I

This provides a baseline for the clustering algorithm to proceed
(Fig. 1). Each unit is given identification variables (Id0; and Id1;), a

4 This flexible neighborhood definition functions in a similar way to the queen adjacen-
cy criterion, and allows working with discontinuous entities or imperfectly drawn
shapefiles. Mu and Wang (2008) used census tracts, which are designed as a continuous
lattice, and implemented a more constrained rook-neighbor definition.
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Table 1
Selected indicators for social diagnosis.

Variable Description

Formula

Unemployment
Dependence
Uneducated
Overcrowding
Precariousness

Percentage of inactive or unemployed population

Percentage of shanty housing

Insalubrity Percentage of housing without formal sanitation systems

High violence Density of homicides, rapes and gravest injuries

Insurgence Density of weapons-related offenses and aggressions to officers
Drugs Density of drug-related crimes and offenses

Aggressions Density of offenses against the person

Percentage of population willing to work but without employment

Inverse of education years for population older than 24 years
Average number of rooms for each inhabitant, calculated at household level

Unemployed / Employed or willing to work

1 — (Employed / Total population)

Population > 24 / Sum of education years (>24)

Mean (Rooms in residence / Residents)

Precarious accommodations / Total accommodations
Insalubrious accommodations / Total accommodations
High violence reports / Area

Insurgence reports / Area

Drug-related reports / Area

Aggression reports / Area

Source: Authors' elaboration with data from Census 2012 and the Interior Ministry of Chile.

grouping marker (G;), an arbitrary number of attribute variables and
their corresponding score (SDS;). Attribute distances to each neighbor
(absDS;;&sqrDS;;) and a local similarity index (aDS;) are computed at
each round. In a round ‘n’ each unit becomes a ‘seed’ only once, giving
priority to local minima. Each ‘seed’ selects the most similar neighbor
among unmarked ones (G;=0), marks it (G;=1) and alters its second-
ary Id (Idn; = Idnseq). If the current ‘seed’ has been previously grouped,
it will transfer the Id of the first ‘seed’ in the cluster. If no unmarked
neighbors are available, the ‘seed’ will adopt the Id of its most similar
one, thus avoiding orphan units.

Next, units are merged by secondary Id, attribute variables are com-
bined as weighted averages,” a new set of PCA scores is computed at the
following scale, a new round is started, and the process iterates until all
units are merged into one cluster (Fig. 1). This algorithm was entirely
programmed in ‘R’.

Scalar PCA recalculation is an important difference to Mu and
Wang's (2008) algorithm, which computes the attribute score at the
first level and then updates it along with other variables as weighted
averages, assigning fixed variance portions to each factor along all the
clustering process (Mu & Wang, 2008:93). However, multicolinearity
is not stable with scale, because the spatial interactions of diverse attri-
butes can be differently affected by distance (Fig. 4). A case study that
allows exploring these effects and the main question of determining
an optimal level of analysis - in a real world setting — will be briefly
outlined in the next section.

3.2. Social distress indicators

Combining 2012 Chilean Census data, available at person and house-
hold levels, six variables were calculated for each one of 47,414 blocks of
GS. Three of these variables correspond to individuals' characteristics
and three to housing conditions (Table 1). By definition, all the variables
take values between 0 and 1. In addition, local crime densities for 2012
were calculated from data of the Interior Ministry of Chile,® selecting
four categories which concern urban violence. These variables were
also normalized between 0 and 1. More attributes could be introduced,
but an easily interpretable dataset will be used for this case.

Income data and socioeconomic level indicators have not been
included, in order to have independent diagnostic criteria to ascertain
the spatial accuracy of the clustering method. In fact, the comparison
of the following results with other segregation studies shows a remark-
able geographic coincidence of the most critical areas, identified with
different methods and datasets.

The selected indicators have been constructed in order to assign
higher values to the conditions which have negative social connotations
(Table 1). This adjustment ensures that all of the variables are positively
correlated with the attribute score at all clustering levels, allowing the
consistent differentiation and ranking of the units by critical social

> By population, area, perimeter or any other appropriate parameter.
6 In the context of a research agreement with the Centre for Territorial Intelligence of
the Adolfo Ibafiez University.

conditions. This hierarchy is based on eigenvalue-weighted sums of
PCA partial scores, a method that resolves the weighting problem
which has been signaled by Cutter et al. (2003) in a similar approach
to diagnosing social vulnerability. In this GS' case study, the scalar
specific attribute score thus calculated will be interpreted as a ‘social
distress score’ (SDS).

This methodology has been applied to the identification of an
optimal level of analysis, leading to an accurate diagnostic of socially
critical areas in GS, as detailed in the following section.

4. Results and discussion
4.1. Choice of an optimal analysis level

We will define an ‘optimal’ scale of multivariate spatial clustering as
the level that represents the strongest coproduction of a set of attributes
within and throughout the corresponding units. This is both related to
evolving multicolinearity in the attribute set and to the consistency of
the clustering process, which can be measured by intra-group
compacity and inter-group isolation. Multicolinearity is quantified as
the average of the absolute values of correlation coefficients’” among
the 10 variables which have been used to elaborate the SDS. In order
to avoid variance biases of different variables, a Fisher Z transformation
of the coefficients was performed before computing the mean, which
was back transformed to a correlation (Alexander, 1990). Intra-group
heterogeneity - the inverse of compacity - is measured as the
Within-group sum of Squared Differences (WSD) between each
elementary® unit's SDS and the average SDS of the cluster. Inter-group
isolation is measured as the Between-group sum of Squared Differences
(BSD) between each cluster's SDS and the average SDS of the clusters.
SDS squared differences, calculated from partial PCA scores, have been
chosen over other multivariate heterogeneity measures in order to
control for multicollinear effects.

Nevertheless, as MAUP scale effects influence the local-hierarchical
clustering process, particularly by generating a spurious increase of
correlation coefficients towards higher levels of aggregation (Fig. 2),
the aforementioned measures must be adequately controlled. Accord-
ingly, 120 spatial Monte Carlo datasets with empirical distributions
have been elaborated, shuffling the selected variables (Table 1) among
blocks, thus generating independent random spatial patterns while pre-
serving the statistical distribution of each attribute. These datasets were
processed by the regionalization algorithm, using two attribute distance
measures: absolute (absDS) and squared (sqrDS) differences of partial
PCA scores (see Section 3.1). For each measure, 60 runs of the regional-
ization algorithm were performed, allowing calculating two adjusted
indicators of the clustering process:

7 Considering a total of 45 unique values for this case, excluding the diagonal (self-coef-
ficients) of the correlation matrix. Absolute values are considered in order to avoid the an-
nulation of positive and negative coefficients.

8 Blocks, in this case.
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First, an Adjusted Fischer Average of Correlation coefficients (AFAC):

AFAC = EFAC — RFAC

where EFAC is the Empirical Fischer Average of Correlations, obtained
from a single run of the regionalization algorithm with real data, and
RFAC is the Random Fischer Average of Correlations, calculated as the
mean value of the 60 runs with shuffled data, for each set.

Second, an Adjusted Heterogeneity Ratio (AHR):

EBSD /
— ____/ RBSD
AHR = EWSD/RWSD

where EBSD and EWSD are respectively the between group and within
group sums of squared differences of SDS, obtained with real data, and
RBSD and RWSD are the corresponding indicators averaged from the
60 random tests.

Remarkably, considering only real data, the averaged coefficients
regularly increase towards higher levels while the between-within
ratios markedly decrease, but after controlling for random effects,

Table 2

Clustering indicators, empirical and random-adjusted.
Scale N° zones EFAC AFAC EBSD EWSD EBW rate AHR
Regionalization with absolute PCA partial scores differences
1 47,414 0.204 0.201 953 0
2 13,332 0.222 0.200 503 291 1.728 0.395
3 3540 0.267 0.241 288 505 0.571 0.504
4 899 0.317 0.278 131 635 0.206 0.553
5 219 0.418 0.345 68 712 0.095 0.656
6 58 0468 0306 26 773 0.034 0.470
7 17 0.555 0.241 13 827 0.016 0.325
8 5 0.753 0.075 8 874 0.009 0.216
9 1(2) 1.000 0.000 0 953
Regionalization with squared PCA partial scores differences
1 47,414 0.204 0.201 953 0
2 13,773 0.225 0.204 521 289 1.804 0.347
3 3827 0.270 0.245 238 493 0.482 0.370
4 1062 0.358 0.321 119 608 0.196 0.448
5 299 0430  0.365 61 690 0.089 0.463
6 84 0491 0363 31 766 0.040 0.401
7 22 0.525 0.263 12 824 0.015 0.259
8 6 0.876 0310 8 874 0.009 0.198
9 1(2) 1.000 0.000 0 953

Source: Authors' calculations.

Notes: Maximum values of the optimality indicators are underlined and in bold case. For
correlation averages (EFAC and CFAC), the reported values at scale 9 correspond to
(2) zones, as displayed in the corresponding column.

both indicators reach maximum values at the same intermediate levels,
for both dissimilarity definitions (Table 2). These indicators show that
the optimal level of analysis for the selected variables in GS is roughly
situated at a clustering level around 219 and 299 zones, depending on
the dissimilarity measure. The regionalization algorithm used for this
evaluation evolves at discrete scales, and a more precise definition
could be obtained with single-step aggregation procedures. However,
for a first approach these results will serve as a proof of principle for
the proposed strategy to define an optimal scale of analysis.

The first question that must be solved is the choice between the
absolute and squared distance algorithms, as the first produces higher
values of AHR while the second performs best in AFAC (Table 2). As
our main concern is to cope with MAUP effects, which are directly asso-
ciated with correlation measures, it is suitable to decide upon adjusted
correlations. Moreover, these measures reflect real spatial interactions
among observations, and can be unequivocally interpreted in terms of
the set of selected variables (Table 1). On the contrary, AHR is a ratio
of ratios, which in turn stem from a series of calculations over PCA
orthogonal transformations. Thus, AHR is a highly sensitive parameter
that may be strongly affected by any of the involved factors, and should
not be used to compare one model to another. Hence, we have calculat-
ed the area contained by linear interpolation among observations of
empirical and random series,® obtaining a value of 2.37 units of Fischer
Averaged Correlation coefficients per logarithm of Units for the absolute
distance algorithm versus 2.87 for the squared distances version
(Fig. 2), leading to choose the latter.

The second question is to determine the optimal scale of analysis and
the corresponding number of clusters for the selected method. In the
case of the squared attribute distances algorithm and considering
AFAC as primary criterion, two very similar levels can be identified,
level 5 with 299 units and an adjusted coefficient of 0.365 and level 6
with 84 and 0.363, respectively. However, AHR allows clearly differenti-
ating both levels, leading to select the fifth one (Table 2). At this stage,
the high sensitivity of this double ratio is useful to differentiate among
observations, while any systematic effects that may be produced by
algorithm settings will similarly affect all the results of the same series.

Regarding correlations and heterogeneity ratios, major differences
are observed between empirical and random datasets. In the case of
Fischer averaged coefficients, there are important correlations of real
data even at block level but they are absent in the random datasets,
indicating that the selected variables are actually coproduced in GS'
territory. These initial differences are first amplified by the

9 With a fitted curve or a continuous hierarchical algorithm this could be calculated as
an integral difference, but in this case no simple formula had a satisfying fit to the real data
series.
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regionalization process and then decrease, as the correlations converge
to a theoretical maximum of 1, attained when only two units remain
(Fig. 2). Concerning the sums of squared differences of SDS, the struc-
ture of real data can be seen as a much lower between-units heteroge-
neity (BSD) at block level, compared with the random datasets, and a
similar difference in internal heterogeneity (WSD) at the final stage of
only one metropolitan aggregate (Fig. 3).

The fact that the highest scores of both measures single out the same
optimal level'® - at least with the algorithm variants which have been
tested here - highlights the close relationship between AFAC and AHR.
In fact, as hierarchical regionalization algorithms simultaneously
increase within-group homogeneity and between-group heterogeneity,
an improvement in correlation consistency is expected, due to noise
reduction inside the clusters and to a better differentiation among
them (Mu & Wang, 2008:97). This opens a way to directly evaluate
regionalization algorithms with real-world data, rather than with
pre-designed or simulated spatial patterns. Furthermore, the results ob-
tained so far support the argument to use AFAC and AHR both to rank
different algorithms based on their performance with a specific set of
data, and to single out the best level of analysis within the chosen
model. Thus, hierarchical dendrograms should be cut at the level that
maximizes AFAC while AHR should be used to differentiate among
close ties. However, this conjecture is based on the comparison of two
closely related algorithms and it should be thoroughly tested with a
wider array of hierarchical regionalization methods, a task that will be
performed in forthcoming research.

Considering the above, yet in order to ascertain if the social diagnos-
tic at the level that has been singled out by the highest AFAC and AHR
indicators sustains the inference of its optimality, it is worthwhile to
develop the following cartographic analysis.

4.2. Socially critical zones in Greater Santiago at multiple scales

Greater Santiago is the main urban system of Chile, having an
approximate population of 6 million inhabitants. It is a strongly segre-
gated city, with high income disparities and severe urban inequalities,
concerning health, education, transport, public spaces and service
deficiencies in poor neighborhoods (De Mattos, 2002; Hidalgo, 2007;
Sabatini & Brain, 2008). Thus, the variables which have been selected
for this study offer a relevant but restricted perspective.

Remarkably, the relative contribution of the selected variables
(Table 1) to the SDS show important scalar variations (Fig. 4). At small

10" Other usual but rather informal optimal level indicators were tested with the same da-
ta, such as within-group heterogeneity ratios between successive levels and diverse vari-
ants of the elbow criterion, which also singled out level 5. However, the discussion of these
results would be excessively lengthy without adding relevant insights to this argument.

scales of aggregation, individual, housing and crime variables are almost
equally correlated to the eigenvalue weighted PCA score. However,
crime variables' contribution sharply decreases at higher scales, which
is consistent with research that shows small-scale spatial correlations
for this kind of data (Andresen & Linning, 2012). Overall, housing vari-
ables exert the strongest influence over SDS scores, reflecting a relevant
spatial specialization of GS' housing market al all scales. These variations
show the importance of recalculating PCA scores at several levels of ag-
gregation, as multiple correlation patterns may change at different scales.

The multiscalar cartography produced by our algorithm with the
selected data is consistent with previous studies of GS's socio-spatial di-
vides, housing inequalities and urban violence (De Mattos, 2002;
Garreton, 2013; Hidalgo, 2007). In general, the characteristic segregation
pattern of GS is more or less conspicuous in levels one to eight (Fig. 5). The
high-income quadrant, from downtown towards the north-east, is partic-
ularly clear in the third scale, as multiple clusters of low SDS represented
in light gray., Darker areas towards the northern, western and southern
peripheries are visible from the second to the fourth level, corresponding
to poor and excluded areas, severed by a clearer radial pattern of middle
class housing, developed around highways and main public transport cor-
ridors. At intermediate levels, the darkest areas reveal the combination of
discriminatory housing policies and multiple phenomena, such as poverty
concentration and urban violence. Level eight clearly reveals the sharp
socio-spatial divide that reflects the severe income and life quality
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Fig. 5. Clustering levels of GS by social distress score. Source: authors' analysis with Chile's 2012 census data.

inequalities between high-income groups, a majority of the Chilean pop-
ulation and cast-out territories.

The fifth scale of clustering, singled out as the optimal level of
analysis (see Section 4.1) is a rich source of information for the analysis
of social distress in GS (Figs. 5, 6). Critical zones are defined as those
having a SDS above two standard deviations from the mean. From the
299 units at the fifth scale, thirteen clusters were thus selected, with a
mean of 9002 inhabitants, slightly under the mean population of census
districts'! in Chile. For the ten indicators used to build the SDS (Table 1),
this subset has mean values which are significantly higher'? than the
other units' average, with insalubrity and precariousness rates which

" This subdivision is immediately below municipalities, while containing census tracts
and blocks.
12 T test with over 99% certainty for all the variables.

are over six times higher, while more than doubling overcrowded
housing rates, high violence and insurgency densities. The detailed anal-
ysis of this data would be excessively long, but we will describe the most
salient features of the critical units (Fig. 5).

Sector ‘A’ is situated in the notorious settlement of ‘La Pincoya’,
founded in 1969 from illegal land takeovers. This area presents the
highest violent crime and the second drugs and insurgency densities,
also having high rates of precarious and overcrowded housing. Zone
‘B’ roughly corresponds to ‘Santa Ana’ neighborhood, which has the
highest overcrowding rate, also being the territory where several
members of a band that executed the greatest robbery in Chilean history
have been arrested. Cluster ‘C’ is a small area in ‘Cerro Colorado’
neighborhood, having the highest precariousness, insalubrity and
dependence rates, and the second worst education and employment
levels. Zone ‘D’ partially matches the ‘Montijo-Resbalon’ areas, located
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in the southern banks of the ‘Mapocho’ river, which has received rural ‘Pudahuel-Norteamérica’ settlements, with a similar history to sector
immigrants since the late XIX century in formerly illegal settlements ‘D, and presenting the highest unemployment ratio and interpersonal
that have been gradually urbanized since Allende's government. This violence density. Zone ‘F' corresponds to the ‘Araucania-Nogales’
area shows the highest insurgency density, and very low levels of settlements, closed at the west by the ‘Central’ highway. This area
education and employment. Sector ‘E’ approximately contains the corresponds to the first regularization of a land takeover in GS, where
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90 families were assigned small parcels in 1947, and presenting
nowadays the highest drug offenses density, and very high insalubrity
and overcrowding ratios. Zone ‘G’ contains the ‘San Gregorio-Malaquias
Concha’ settlement, the first extensive social housing developments in
GS, built since 1959 in order to accommodate the earliest massive
eradications in Chile, in rather precarious conditions. A half century
later, this area still presents deficient housing conditions, while
developing high levels of urban violence. Cluster ‘H’ corresponds to ‘La
Bandera’ settlement, founded as a massive illegal takeover in 1969 and
formalized by Allende's government in 1971. This neighborhood pre-
sents the lowest education levels, severe dependence, precariousness
and overcrowding rates, and high crime densities. Sector ‘I’ is a mixture
of ‘Nueva Espejo’ settlements with industrial zones, where the spatial
proximity of low-skilled jobs contrasts with low education levels, high
unemployment and dependency rates, and adverse housing conditions.
Sector ‘J' partially matches the ‘Olivo’ and ‘Portada’ settlements, founded
in the sixties around the satellite town of ‘San Bernardo’, expanded
afterwards in order to accommodate families eradicated by Pinochet's
dictatorship. This area shows rather high levels for all of the selected
indicators, with the exception of insalubrity rates.

In sum, most of the highest SDS units correspond to well-known
critical areas. A thorough discussion of their local identities, substantive
characteristics and their possible categorization as neighborhoods are
beyond the scope of this article, but the technical approach developed
so far has been certainly useful to distinguish them in a metropolitan
context. In these places, poor households have been concentrated by
rural immigration, the first housing policies, forceful eradications during
Pinochet's dictatorship, or by more recent massive developments of
social housing. Acknowledging the incompleteness of the selected
indicators and having probably overlooked some relevant cases, these
examples show that critical social conditions are historically produced
by urban policies and geo-economic trends, while being expressed as
different and complex combinations of socio-spatial handicaps.

It should be noted that GS' case presents several historic peculiari-
ties, mostly related to deregulation of urban development through
neoliberal policies implemented in Pinochet's dictatorship, which have
intensified socioeconomic segregation processes. Thus, it is unclear if
the kind of analysis which has been performed here would lead to sim-
ilar results in other contexts. For example, the contrast of urban inequal-
ities between GS and Greater Paris, which have very different historical
and regulatory conditions, has shown remarkable similarities and sharp
differences between both cities (Garreton, 2013). However, the
aggregation behavior of similar sets of variables should present related
properties in different contexts, so diagnostics based on AFAC and
AHR or similar indicators could help to accurately identify common
and particular characteristics in international comparisons.

Finally, the results obtained so far demonstrate the usefulness of the
proposed regionalization diagnostic strategy and its statistical robust-
ness, suggesting new approaches to compare different contexts through
differences on the scale and characteristics of their optimal analysis
levels. To conclude, the main findings of this work and relevant lines
for further research will be highlighted in the last section of this article.

5. Conclusion

In this work, we have underscored the theoretical and empirical
relationships between MAUP and regionalization approaches, thus
developing a strategy to cope with scale effects which allows the
determination of an optimal level of analysis. With this objective, an
improvement of existing hierarchical regionalization algorithms (Mu
& Wang, 2008) has been implemented, recalculating PCA scores -
which are used to calculate dissimilarity among units - at several steps
of aggregation, thus capturing scalar variations of multicolinearity.
Particularly, at higher scales a marked decrease of the influence of
crime variables on spatial interactions has been observed in GS, which
is consistent with previous research (Andresen & Linning, 2012).

The main contribution of this research is to propose a strategy to
determine the best hierarchical regionalization algorithm for a real
dataset and then to select its optimal level of analysis (Section 4.1). This
is based on two adjusted indicators for the aggregation process, calculat-
ed with the results of one real and 60 spatial Monte Carlo generated
datasets, allowing controlling for spurious MAUP effects. The best algo-
rithm is considered to be the one producing a maximum aggregated
AFAC, calculated as an integral difference between Fischer averaged
correlations of real and shuffled data at every aggregation step, or by a
suitable approximation. As a stopping rule to cut dendrograms, the
optimal scale or number of clusters can be determined by the maximum
AFAC as primary criterion, while close ties can be differentiated by AHR,
which is a double ratio of between and within cluster heterogeneity of
empirical and random datasets. Remarkably, both indicators single out
the same levels for algorithms with two different dissimilarity
definitions. These endogenous criteria for a stopping rule could
contribute to focus hybrid regionalization methods (Guo & Wang,
2011), defining an optimal partitioning scale with results obtained at
the preceding hierarchical structuration.

A statistical and cartographic analysis of GS' socially distressed areas
at the optimal scale thus defined confirms the accuracy of this methodol-
ogy, allowing identifying notorious neighborhoods with consistent iden-
tity, historical and socioeconomic local handicaps. Some of these
characteristics have been only briefly described, and the important ques-
tion of what a cluster means in an urban setting has not been addressed.
As recent research clearly shows, spatial clustering can provide rich
frameworks to understand socio-spatial phenomena and to identify
neighborhoods in more objective ways (Clark et al.,, 2015; Spielman &
Logan, 2013). The proposed methodology opens interesting research per-
spectives on these subjects, clearly identifying aggregation scales that
could lead to relevant substantive analysis of the places thus identified.
For instance, the critical areas highlighted in this work can be useful for
policy design and for further statistical and qualitative research.

It should be noted that this work has compared two closely related
regionalization methods and further research is needed - involving
different cases and a wider array of algorithms and dissimilarity
measures - in order to confirm the general performance of the proposed
stopping rule. Nevertheless, the results obtained so far show the
consistency of this strategy to identify an optimal scale of analysis,
which has solid foundations on MAUP and clustering theories, thus
contributing to the theoretical and empirical understanding of the
spatial self-organization of interdependent real-world phenomena.
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