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A B S T R A C T

Soil ecosystem dynamics are influenced by the composition of bacterial communities and environmental con-
ditions. A common approach to study bacterial successional dynamics is to survey the trajectories and patterns
that follow bacterial community assemblages; however early successional stages have received little attention.
To elucidate how soil type and chemical amendments influence both the trajectories that follow early compo-
sitional changes and the architecture of the community bacterial networks in soil bacterial succession, a time
series experiment of soil microcosm experiments was performed. Soil bacterial communities were initially
perturbed by dilution and subsequently subjected to three amendments: application of the pesticide 2,4-di-
chlorophenoxyacetic acid, as a pesticide-amended succession; application of cycloheximide, an inhibitor af-
fecting primarily eukaryotic microorganisms, as a eukaryotic-inhibition bacterial succession; or application of
sterile water as a non-perturbed control. Terminal restriction fragment length polymorphism (T-RFLP) analysis
of the 16S rRNA gene isolated from soil microcosms was used to generate bacterial relative abundance datasets.
Bray-Curtis similarity and beta diversity partition-based methods were applied to identify the trajectories that
follow changes in bacterial community composition. Results demonstrated that bacterial communities exposed
to these three conditions rapidly differentiated from the starting point (less than 12 h), followed different
compositional change trajectories depending on the treatment, and quickly converged to a state similar to the
initial community (48–72 h). Network inference analysis was applied using a generalized Lotka-Volterra model
to provide an overview of bacterial OTU interactions and to follow the changes in bacterial community net-
works. This analysis revealed that antagonistic interactions increased when eukaryotes were inhibited, whereas
cooperative interactions increased under pesticide influence. Moreover, central OTUs from soil bacterial com-
munity networks were also persistent OTUs, thus confirming the existence of a core bacterial community and
that these same OTUs could plastically interact according to the perturbation type to quickly stabilize bacterial
communities undergoing succession.

1. Introduction

Biological succession (BS), or more inclusively community dy-
namics, may be understood as the changes in the composition or ar-
chitecture of a community assemblage at a specified location over time
(Pickett and McDonnell, 1989; Meiners et al., 2015). Although BS
theory has been mostly applied to study macro-organism communities,
several microbiological studies have used the BS concept to explain the

changes that occur in microbial communities over time (Schmidt et al.,
2014; Zhou et al., 2014; Brannen-Donnelly and Engel, 2015) and over
time and space (Bajerski and Wagner, 2013; Storey et al., 2015; Beam
et al., 2016). However, few studies have described the changes in
bacterial assemblages during early stages of bacterial succession, as in
colonization of pristine soil or heavily perturbed substrates.

Perturbations are incredibly varied, as are their impacts on com-
munities (Armesto and Pickett, 1985). As such, initiating factors may
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represent the dominant shaping force between perturbation and suc-
cession (Meiners et al., 2015). To measure perturbation effects, changes
in community diversity and composition are usually analyzed (Shade
et al., 2012; Itoh et al., 2014; Brannen-Donnelly and Engel, 2015).
However, little is known about how perturbations affect the early
compositional trajectories and community network architecture that a
perturbation-induced succession produces. Conceptual models of suc-
cessional dynamics of microbial communities assume that predictable
changes in species composition occur during microbial BS (Nemergut
et al., 2007; Redford and Fierer, 2009; Shade et al., 2012; Fukami,
2015). Species turnover processes, i.e. the replacement of species, has
been shown to occur in a predictably manner in a variety of ecosystems
(Schmidt et al., 2007; Redford and Fierer, 2009; Fierer et al., 2010).
Nestedness, a measure that quantifies the overlap in species composi-
tion between high- and low-diversity times (Atmar and Patterson,
1993), is especially high in fragmented ecosystems (Ruhí et al., 2013)
or during late BS stages of biofilm development (Jackson et al., 2001).

Advances in techniques to estimate changes in community compo-
sition have elucidated the processes of resistance and resilience to en-
vironmental disturbances. However, understanding changes in both
community composition and the interactions between organisms in that
community is necessary obtain sensitive indicators of the health status
of an ecosystem (Burkhard et al., 2008; Fukami, 2015). While there are
extensive data on interactions between populations in communities of
macro-organisms, much less is known about the interactions between
bacteria, mainly because these interactions are more difficult to observe
and document. Advances in bioinformatics and statistics have provided
a wealth of tools for the inference of community networks; however,
these methods have not yet been applied to estimate the restoration
potential of an ecosystem based on changes in microbial community
networks. One of the methods used for network inference is based on
the Lotka-Volterra (LV) model. Using this model, it is possible to hy-
pothesize putative interactions though inference of both the sense of the
interaction (who affects whom) and the type of interaction (positive or
negative) between relevant actors in the community (Faust and Raes,
2012; Berry and Widder, 2014; Agler et al., 2016; van der Heijden and
Hartmann, 2016).

Considering the importance of colonizing microorganisms in in-
itiating succession, the bacterial community composition at the begin-
ning of succession may play a central role in shaping soil ecosystem
dynamics in response to perturbations, modulating land recovery,
maintaining soil health (Berendsen et al., 2012; Chaparro et al., 2012;
Itoh et al., 2014; Creamer et al., 2016), and promoting successful set-
tlement and growth of plants (Chabrerie et al., 2003; Knelman et al.,
2012). Studying the composition of soil bacterial communities and
successional dynamics contributes not only to the understanding of
bacterial community processes occurring in soil microbial ecosystems,
but also to the development of strategies for sustainable land man-
agement, as an agro-resource.

This work describes how the successional conditions of soil bacterial
communities affect the trajectories of compositional changes and how
these changes are reflected in the structure of community bacterial
networks. Using soil microcosms prepared with a non-irradiated/irra-
diated (1:19) soil mix, thus imitating colonization of a resource rich
substrate, three soil successional conditions were tested: no perturba-
tion, eukaryote-inhibition, and pesticide-amendment. The non-per-
turbed soil microcosms (i.e. controls) received only sterile water; the
eukaryote-inhibition condition was amended with cycloheximide
(CHX), a compound that strongly inhibits eukaryote development, by
protein synthesis inhibition (Kota et al., 1999; Manzano et al., 2007;
Holmes et al., 2014); and the pesticide condition was amended with the
chloroaromatic pollutant herbicide 2,4-dichlorophenoxyacetic acid
(2,4-D), whose toxic effects are well-described (Kraiser et al., 2013).
The choice of the compounds used (CHX and 2,4-D) obeys to the
characteristics of both compounds. CHX can kill or inhibit a significant
fraction of soil eukaryotes, diminishing the activity of bacterial

predators and affecting the interaction between fungi and bacteria.
However, the most remarkable use of CHX is as an antiprotozoal che-
mical. CHX has been used as a eukaryotic growth inhibitor both for
bacterial isolation (Capozzi et al., 2012) and to test ecological hy-
potheses in bacterial predation experiments (Kota et al., 1999; Holmes
et al., 2014). The pesticide 2,4-D, which has been used for decades for
weed control, was chosen as an example of anthropic perturbation. This
decision is supported by a wealth of studies available on the effects of
2,4-D on soil and particularly on microbial communities (Pérez-Pantoja
et al., 2003; Vroumsia et al., 2005; Manzano et al., 2007; Gazitúa et al.,
2010). Together, these treatments represent examples of disturbances
produced by pesticides or by inhibition of eukaryotes.

Using varied statistical and computational data analysis strategies,
we aimed to test the hypothesis that soil successional conditions de-
termine both the trajectories that follow early compositional changes
and the architecture of bacterial community networks, adding to our
understanding of the ecological rules that dictate community stability.

2. Materials and methods

2.1. Soil samples and microcosm design

Soil microcosms were prepared with a grassland soil from San Borja
Park (SB) (33° 26′ S, 70° 39′ W) or with an agricultural soil from Calera
de Tango (CT) (33° 36′ S; 70° 45′ W), both located near Santiago, Chile.
Soil samples were taken to the laboratory, sieved through a 2 mm mesh
and dried at 40 °C for 48 h. The homogenized material was subjected to
physical and chemical characterization (Supplementary material, Table
S1), using standard procedures (Sparks et al., 1996). One kilogram of
each soil sample was irradiated with a 75-kGy dose of gamma radiation
(a 60Co source). Gamma irradiation was selected because it produces
almost sterile soil (McNamara et al., 2003). The 75-kGy total dosages
were applied as 25-kGy partial doses in three consecutive days. To
check sterility, three non-amended soil microcosms (see below) con-
taining only irradiated soil were incubated during the corresponding
experimental period and metagenomic DNA was then extracted and
analyzed. For microcosm experiments, irradiated soil was homogenized
and mixed in a ratio of 19:1 with the respective CT or SB native soil.
Microcosms were prepared in 50 ml glass beakers containing 10 g of
soil mixture, covered with polyethylene foil, and incubated at
22 ± 2 °C. Three different treatments were tested: controls corre-
sponding to the irradiated/non-irradiated soil mixture (19:1) plus
500 μl sterile water (water holding capacity 25%), as used in the next
two treatments; eukaryotic-inhibition treatments amended with CHX to
give a final concentration of 1 mg g−1 of soil; and pesticide treatments
amended with the pesticide 2,4-D (400 mg kg−1 of soil).

2.2. Experimental settings

To investigate the patterns and trajectories that bacterial commu-
nities follow during different successional stages, two experimental set-
ups were designed using different sampling schemes.

2.2.1. Comparing successional dynamics in two soils
To compare the response dynamics of two different soil bacterial

communities, two sets of ten microcosms each were set up under the
control conditions described above with CT or SB soils. Five sampling
times were established (0, 12, 24, 48 and 72 h of incubation). In each
sampling time, two microcosms of each set were sacrificed and 1-g
homogenized soil samples from each microcosm were frozen im-
mediately in liquid nitrogen and stored at −20 °C for no more than ten
days before DNA extraction.

2.2.2. Comparing the effect of perturbations in very early successional
dynamics

Using CT soil, control, eukaryotic-inhibition and pesticide-amended

G. Rodríguez-Valdecantos et al. Applied Soil Ecology 120 (2017) 44–54

45



conditions were tested in three sets of 24 soil microcosms each. Twelve
sampling times were established (after 0.5, 1, 2, 4, 6, 10, 16, 24, 36, 48,
72 and 300 h). In each sampling time, two microcosms of each set were
sacrificed and samples were removed, frozen, and stored as indicated
above.

2.3. DNA extraction and T-RFLP analysis

The FastDNA spin kit for soil (MP Biomedicals, Santa Ana,
California, USA) was used to obtain metagenomic DNA from 1 g soil
sample following the manufacturer’s instructions. Cellular lysis was
performed using the Lysing Matrix E (a mixture of ceramic and silica
beads), the lysis buffer MT and the FastPrep®-24 instrument (MP
Biomedicals, Santa Ana, California, USA), at level 6 during 40 s. This
protocol yielded DNA concentrations ranging from 0.02 to 0.9 μg μl−1

in a final volume of 50 μl, as quantified by spectrophotometry (Infinite®

200 PRO NanoQuant, Tecan Group Ltd., Männedorf, Switzerland).
Metagenomic DNA was used as a template for PCR with primer pairs 8F
(5′ AGA GTT TGA TCC TGG CTC AG 3′) (Lane, 1991), labeled with the
fluorochrome 6-FAM at the 5′ end, and 1392R (5′ACG GGC GGT GTG
TAC 3′) (Lane et al., 1985). Each PCR amplification contained 5 μl of
10× PCR buffer (200 mM Tris-HCl, pH 8, 500 mM KCl), 3 mM MgCl2,
0.2 μM of each primer, 0.2 mM dNTP, 0.2 mg ml−1 bovine ser-
oalbumin, 10–50 ng of soil DNA, and 1 U of Taq polymerase, in a total
reaction volume of 50 μl. PCR reaction conditions were as follows: 94 °C
for 5 min; 30 cycles at 94 °C for 45 s, 56 °C for 45 s, and 72 °C for 2 min;
and a final extension at 72 °C for 7 min. PCR products were digested
with 20 U MspI or HaeIII restriction enzymes in appropriate buffers for
3 h at 37 °C in a final volume of 20 ul. Each PCR product was digested
separately with each enzyme to assess T-RFLP profiles consistency. As
most profiles indicated the same trends in terms of the trajectories that
follow compositional changes (Supplementary material, Fig. S1,), only
the MspI profiles are reported. After desalting, the DNA fragments were
separated and detected through capillary electrophoresis (Macrogen,
Korea) and analyzed using Peak Scanner software (v1.0, AB Applied
Biosystems, USA). The fragment sizes were estimated using the internal
standard LIZ 1200 as reference.

2.4. T-RFLP data processing and statistical analysis

Raw data were terminal restriction fragments (T-RFs) sizes, mea-
sured in base pairs, and individual peak areas measured in fluorescence
units. Only T-RFs from 50 to 500 bp were included in the analysis. T-
RFs representing less than 0.5% of the total area were not considered,
and the data were standardized by calculating the area of each peak as a
percentage of the total area (Morán et al., 2008). Relative abundances
of bacterial phylotypes were determined from relative intensities of T-
RF signals. The composition of each community was described in terms
of operational taxonomic units (OTUs) represented by the T-RFs signals
(Schütte et al., 2008). Beta diversity was primarily analyzed using
Bray–Curtis distance matrices based on the square root-transformed
abundance of each OTU. Non-metric multidimensional scaling (NMDS)
analyses were used to group data according to their similarity (Clarke,
1993), and two-way crossed analysis of similarity (ANOSIM) was used
to examine the statistical significance of grouping according to treat-
ment factor (Clarke, 1993). The PERMANOVA test (Anderson, 2001)
was employed to determine statistical differences between treatments
and trough the time. Finally, the method proposed by Baselga (2010),
which consists of partitioning the additive components of beta di-
versity, was used to analyze the contribution of “nestedness” and
“turnover” processes during bacterial succession.

2.5. Beta diversity partition analysis

Beta diversity is a powerful method for studying changes in patterns
of diversity at different spatial-temporal scales (Mousing et al., 2016;

Florencio et al., 2016). As this report investigates changes in commu-
nity composition in relation to temporal gradients under three distinct
conditions, a similarity-driven approach was selected (Vellend, 2001;
Baselga, 2010). To study the contribution of nestedness and turnover
processes to the changes in beta diversity, pairwise differences in
community composition were calculated between time lapses. This
method facilitated the understanding of temporal patterns in the un-
derlying community composition regardless of inter-temporal fluctua-
tions in bacterial successions and revealed differences between the
three tested conditions.

Beta diversity partition analysis was performed in R (R Core Team,
2014), using the package “Betapart” (Baselga et al., 2013), which uses
presence/absence data as input. Using the additive partitioning fra-
mework proposed by Baselga (2010) it is possible to decompose the
total pair-wise dissimilarity of Sørensen (βsor) into the turnover (βsim)
component and the nestedness (βsne) component. The pair-wise dis-
similarity of Simpson (βsim) describes the differences due to turnover
(McKnight et al., 2007) while βsne describes the differences due to
nestedness. It is calculated as the difference between βsor and βsim.
Then, βsne represents the increasing dissimilarity between nested as-
semblages due to the increasing differences in species richness (Baselga,
2010). To evaluate if turnover or nestedness is the predominant process
in bacterial community dynamics (Baselga et al., 2013), NMDS graphics
was used. Dissimilarity matrices from binarized (presence/absence) T-
RFLP data were calculated using the betpart package (Baselga et al.,
2013). A dissimilarity matrix of total beta diversity (βsor) and each beta
diversity component (turnover and nestedness) from each condition
were visualized. To improve the data interpretation, arrows showing
the temporal trajectories were added to NMDS graphics.

2.6. Soil bacterial community networks inference and analysis

Standardized T-RFLP data were used to compare the effect of the
pesticide amendment and eukaryotic inhibition through network con-
struction. Using the mean of duplicate T-RFLP profiles to generate a
data set that contained the average relative abundance of each OTU
over time, the generalized LV equations (see below) were utilized as a
dynamic model of a microbial community. The computed values of LV
interaction coefficients (βij) were calculated in R (R Core Team, 2014)
using the packages “doBy” and “prob”. Based on T-RFLP relative
abundance data, the parameters αi and βij of an N-species LV model for
each treatment were calculated. The dynamic of the OTU i (i = 1,…,n)

was as follows: ∑=
⎛

⎝
⎜ +

⎞

⎠
⎟

≠

X α X ·βdX
dt i i

j i
j ij

i , where Xi represented the re-

lative abundance of the OTU i, αi represented the intrinsic growth rate
of the OTU i, and βij corresponded to the influence of the average
variation rate of the OTU i on the relative abundance of OTU j. This
influence was positive or negative according to the sign of βij
(Wangersky, 1978; Faust and Raes, 2012). Within this simplified
system, the interaction coefficient βij was considered to be significant
when the value of P(βij) ≠ 0 was>90%, with a 0.75 threshold value
(Mounier et al., 2008). The output of this method was a square ad-
jacency matrix (or interaction matrix) (Deng et al., 2012), which con-
tained the value of interaction (βij) between every interacting OTU. In
order to simplify the analysis, the value of βij was discretized, adopting
values of −1, 0 or 1. The output of the inference networks corre-
sponded to meta-community adjacency matrices (meta-community
networks), representing all the possible interactions that occurred in a
particular condition over time. To analyze the topological changes in
bacterial community networks over time, sub-networks inferences were
made from the meta-community network. Nodes and edges were sub-
tracted from the network according to whether the respective inter-
acting OTU was present or absent in the corresponding sample. Then, to
detect conserved and persistent networks, meta-community networks
were analyzed using a ranking of presence/absence of each OTU in time
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at three persistence levels: 100, 91.7 and 86.3%, corresponding to OTUs
that appeared in all 12, 11 and 10 samples, respectively. Only the
connected components (i.e. more than two edges) of those sub-net-
works were considered.

Network analysis was performed entirely in Cytoscape (Assenov
et al., 2008). First, to analyze the differences in the type of ecological
interactions that occurred under different experimental conditions, the
number of positive and negative edges between each condition was
compared. Second, to analyze the differences in the topological changes
of the sub-networks between the different conditions, a set of measures
(network size, average clustering coefficient, average number of
neighbors, and average path length) were calculated using network
analysis tools (Creamer et al., 2016). Third, to identify the keystone
OTUs of the inferred meta-community and sub-networks, the local
measure of centrality, or “betweenness” (Estrada, 2007; González et al.,
2010) was used. Briefly, betweenness calculates the degree of im-
portance of each OTU i within the network by estimating how the
network would look without the presence of a keystone (Berry and
Widder, 2014; Agler et al., 2016; van der Heijden and Hartmann,
2016). Then, the size of each node in each network was scaled using
this measure to improve the interpretative value of the networks vi-
sualization, such that the size of the node corresponded to the ranking
of keystones (Creamer et al., 2016).

Statistics for the size of networks, average number of neighbors,
average clustering coefficient, and average shortest path length were
extracted from Cytoscape and plotted using the “gplots” (Warnes et al.,
2009) and “plotrix” (Lemon, 2006) packages in R. Indices were calcu-
lated from average data of individual measurements on each node
(OTU). Therefore, the number of measurements (except for Netwrok
size index) equaled the number of OTUs comprising each network. In
terms of bacterial community assembly, nodes represent OTUs, edges
represent the interaction between OTUs, and neighbors are OTUs con-
nected by an edge. As such, variations in network parameters represent
changes in the richness of interacting OTUs (size); changes in the
average connectivity of a node in the network (average number of
neighbors); and changes in the average of the clustering coefficients for
all nodes in the network (average clustering coefficient). These para-
meters have been used to describe hierarchical properties of networks
through the extent of module structure in a network (Deng et al., 2012).
In turn, the changes in the average shortest path represent the changes
in the average expected distance between two connected nodes, which
is biologically interpreted as the overall ability of the OTUs to influence
their reciprocal activity or abundance for individual nodes (Scardoni
and Laudanna, 2012). This parameter has also been interpreted as the
speed of the network’s response to perturbations (Zhou et al., 2010),
where low values represent high speed. To test significant differences
between treatments in average number of neighbors, clustering coeffi-
cient, and average shortest path parameters, a two-way ANOVA was
used. Data corresponding to the index of “average shortest path length”
did not comply with the homoscedasticity postulation and were square-
root transformed for statistical analysis. A post-hoc Tukey test was also
performed to test statistical significance between treatment pairs.

3. Results

3.1. Comparing early successional dynamics in two soils

To study early successional dynamics of bacterial communities, the
16S rRNA gene T-RFLP profiles from agricultural (CT) and grassland
(SB) soil microcosms were compared. NMDS analysis of these T-RFLP
profiles showed a clear grouping of samples according to soil type for
all sampling times analyzed (Fig. 1). ANOSIM comparisons between soil
type groups indicated that the observed groupings were statistically
significant with a global R-value of 1 (p= 0.001). The R-value of 1
indicated that the observed differences in taxonomic composition were
high, which is expected given the different soil origins (grassland versus

agriculture) and their different physical and chemical characteristics
(Supplementary material, Table S1). Despite the differences in the
bacterial community structures of these soils, it appeared that the tra-
jectories in both soils were similar (Fig. 1), supported by an R-value of
0.767 (p = 0.001) for the factor “time”. Between 0 and 24 h, bacterial
communities experienced structural changes diverging from the native,
non-incubated soil (Fig. 1), but quickly returned to structures similar to
the starting point. The differences in the trajectories between both soils
primarily reflected the greater data dispersion exhibited by CT soil
bacterial communities and the greater effect of dilution/wetting on the
native community in CT soil compared with SB soil (native compared to
0 h time samples, Fig. 1).

3.2. Comparing the effect of a biotic and an abiotic perturbation at very
early succession times in agricultural soil microcosms

NMDS analyses of the T-RFLP profiles showed that agricultural (CT)
soil bacterial community structures changed immediately upon in-
oculation (0.5–2 h) with respect to the native bacterial community and
that both amendments have low effects comparing with the wetting/
dilution effect produced in control conditions (Fig. 2). Middle time
period (10–36 h) T-RFLP profiles were more dissimilar between re-
plicates but those from longer incubations (48–300 h) tended to cluster
together and to be more similar to the initial community. Some outliers,
i.e. T-RFLP profiles that have high dissimilarity with those of similar or
the same incubation times, were observed but mainly at very early
succession stages (Fig. 2). For example, control condition bacterial
communities exhibited similarities between replicates of 11.2%, 55.3%
and 63.5% at 1, 10, and 36 h, respectively; bacterial communities from
the eukaryotic-inhibition treatment at 4 h showed 43.7% similarity
between replicates; and bacterial communities from the pesticide-
amended treatment showed 44.9% and 42.5% of similarity between
replicates at 0.5 and 4 h, respectively. These outliers might be con-
sidered as alternative states of otherwise convergent trajectories. AN-
OSIM comparisons between treatments indicated that the observed
grouping was statistically supported with a global R-value of 0.565
(p = 0.001) and pairwise R-values of 0.479 (p= 0.001) for the control/
eukaryotic-inhibition pair, 0.625 (p= 0.001) for the control/pesticide-
amended pair, and 0.688 (p= 0.001) for the eukaryotic-inhibition/
pesticide-amended pair. To test for differences between treatments and
time, a nested PERMANOVA test was performed and indicated that
treatment accounted for a 15% of the variance in community structures
(R2 = 0.158; p= 0.001). Time was the major factor explaining the
differences found, accounting for more than a 40% of the variance
(R2 = 0.407; p = 0.001), while the interaction of treatment-time was
also statistically significant and accounted for almost a 21.5% of the
variance (R2 = 0.215; p= 0.001) (Supplementary material, Table S2).

To compare the relative influence of turnover and nestedness during
bacterial succession under the three experimental conditions, a beta-
diversity partition analysis was performed. Pairwise analysis of total
beta diversity (βsor), turnover (βsim), and nestedness (βsne) components
of species dissimilarity was visualized by NMDS (Fig. 3). βsor and βsim
showed a similar distribution of samples, with a grouping pattern that
resembled that obtained by multivariate analyses based on Bray-Curtis
dissimilarity (Figs. 2 and 3). In both analyses, trajectories showed clear
phases in community composition; with early (10–24 h) and late stages
(48–300 h) differing, and very early stage (0–10 h) tending to be more
similar with late stages. βsne dissimilarity showed no clear grouping
pattern associated with time (Fig. 3), which implies that nestedness has
low influences in the changes observed during early succession of
bacterial communities in soil microcosms.

3.3. Soil microcosm bacterial community network analyses

To test the effect of perturbations on the architecture of bacterial
community networks, an inference network of OTU interactions was
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constructed and interpreted. In general, control bacterial community
networks demonstrated more negative than positive interactions, with a
negative to positive interaction ratio of 3.3 (Supplementary material,
Fig. S2, panel A). Eukaryotic inhibition strongly changed this ratio to
13.8, increasing the number of negative interactions (Supplementary
material, Fig. S3, panel A). In contrast, pesticide application increased
positive interactions, resulting in a ratio of 0.32 (Supplementary ma-
terial, Fig. S4, panel A). These results suggest that antagonist interac-
tions increase when eukaryotes are inhibited while cooperative inter-
actions increase in the presence of a toxic pesticide.

Network analysis results also suggested that bacterial community
assemblies reflected distinct patterns according to the perturbation
(Fig. 4). Results from a two-way ANOVA (Supplementary material,
Table 2) showed significant differences in the “average shortest path
length” index (F11,964 = 2.138, p = 0.015) by time, while the response
variables “average clustering coefficient” and “average neighborhood
connectivity” showed significant interactions between treatment and
time (F22,964 = 3.754, p < 0.001; F22,964 = 69.644, p < 0.001 for
average clustering and average neighborhood connectivity, respec-
tively). A post-hoc Tukey test showed significant differences between
control/eukaryotic-inhibition and control/pesticide-amended treat-
ments for the “neighborhood connectivity” index (see Supplementary
material, Table S3.D). Together, these results indicated that control
network dynamic differed to perturbed successions networks in con-
nectivity, but not for both response speed and complexity.

Patterns observed for changes in network sizes (Fig. 4A) were quite
similar to those for OTU richness (data not show), which is consistent
with the fact that reconstruction of the sub networks was performed
with presence/absence data. The oscillation of network index values
observed under control conditions suggested that the networks of
bacterial communities rapidly and frequently changed their complexity
and thus their architecture. Moreover, both connectivity (average
number of neighbors) and response speeds (average path length) fol-
lowed almost the same trend observed with network size changes
(Fig. 4B and D).

A large starting network size was observed for the pesticide-
amended condition, with a rapid reduction until 24 h, followed by a
sustained increase in size up to 300 h of incubation (Fig. 4A). When
eukaryotes were inhibited, bacterial communities exhibited a similar

behavior. Furthermore, changes in clustering parameters (Fig. 4C) in-
dicated that community networks were highly dispersed (i.e. low levels
of clustering) up to 48 h of incubation regardless of the starting con-
ditions. While the average clustering coefficient values oscillated for
control and pesticide-amended treatments, the eukaryotic inhibition
maintained consistently minimal values for the first 72 h of incubation.
Between 72 and 300 h, both control and eukaryotic-inhibition condi-
tions exhibited a sharp increase the clustering coefficient (Fig. 4C),
which correlated with the formation of an interconnected hub in the
sub-networks from the 300 h sampling time (Supplementary material,
Figs. S2 and S3, panels C). In contrast, amendment with 2,4-D produced
a low level of clustering after 16 h of incubation with an increase after
32 h, a peak at 72 h, and a subsequent decrease (Fig. 4C) coinciding
with the appearance and disappearance of peripheral networks (Sup-
plementary material, Fig. S4, panels B and C). Such network dis-
connections affected the calculation of this coefficient.

3.4. Keystones and core networks

The relationship between structural changes in bacterial community
networks and highly abundant, persistent OTUs was also addressed.
The betweenness centrality of a node in a community network can in-
dicate the extent to which a given OTU is structurally capable of
holding together populations, i.e. two bacterial species could be inter-
connected through a keystone OTU (high betweenness centrality).
Thus, a higher keystone ranking value corresponds to a higher re-
levance of the OTU in organizing community interactions. Although the
richness of keystones was variable over time and among treatments
(Supplementary material, Figs. S2–S4, panels B), some OTUs persisted
with high values of centrality in almost all networks, concomitant with
the keystones present in core networks that represent node groups that
were persistent in the community (Fig. 5). OTUs were selected based on
their observation in 100% of the instances (12 of 12 instances, extracted
from the averages of the twelve times sampled) for each treatment,
91.7% of the instances (11 of 12), and 86.3% of the instances (10 of 12).
Results indicate that several OTUs acted as network hubs, independent
of the incubation conditions (Fig. 5). OTUs labeled with the numbers
88, 140 and 493 (corresponding to their fragment length sizes) oc-
curred in 100% of samples (Fig. 5) and exhibited medium to high

Fig. 1. Non-metric multidimensional scaling (NMDS) analysis ofMspI-
terminal restriction fragment length polymorphism (T-RFLP) profiles
for the 16S rRNA bacterial gene from Calera de Tango (CT) and San
Borja (SB) soil microcosm metagenomic DNA, showing the trajectories
and grouping of bacterial community structures during early succes-
sional stages (0–72 h). (△): native, non-incubated soil (NS); (▼):0 h;
( ) 12 h; (●) 24 h; (+) 48 h; and (×) 72 h. Each symbol corresponds
to a single T-RFLP profile. Stress values for NMDS analysis are in-
dicated at the upper right corner. Bray-Curtis dissimilarity matrices
were calculated over square root transformed data.
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betweenness centrality levels in both the meta-community networks
and the sub-networks (Supplementary material, Figs. S2–S4). While
these three OTUs had maximum persistence in bacterial communities
all treatments, interactions among them were heavily dependent on the
incubation condition. In control conditions, OTUs 88 and 493 influ-
enced OTU 140 negatively and positively, respectively (Fig. 5A). When
eukaryotes are inhibited, OTUs 88 and 493 negatively influenced each
other, and OTU 140 benefited from OTU 88 (Fig. 5D). In the pesticide-
amended condition, OTU 88 had a positive influence on both OTUs 140
and 493 (Fig. 5G). As expected, after decreasing the percentage of
persistent OTUs, core networks increased in size (compare Fig. 5A with
B and C; D with E and F, and G with H and I). In any case, it can be
noted that most OTUs belonging to the conserved networks were re-
dundant among treatments, indicating that these OTUs might be im-
portant in explaining the convergence levels detected through NMDS
and multivariate analyses (Fig. 2).

Temporal changes in the average relative abundance of keystones
between treatments were examined (Supplementary material, Fig. S5).
Despite their generally fast and prolific propagation, OTUs 88 and 152
demonstrated consecutive peaks in abundance at very early (1 h) and
early (between 16 and 36 h) stages, respectively, which may indicate
that early bacterial succession of high abundance OTUs, follows turn-
over patterns similar to those reported for long term succession (van

Breugel et al., 2007). The low abundance OTUs also exhibited a similar
behavior (Supplementary material, Fig. 5S, panel B).

4. Discussion

Bacterial community structures in soil microcosms exposed to dif-
ferent conditions were compared through the culture independent
molecular technique T-RFLP (Hartmann and Widmer, 2008; Schütte
et al., 2008) and with a combination of multivariate and network based
analyses. The results reported here indicate that soil bacterial com-
munities exposed to a resource-rich substrate, as a result of extensive
irradiation (i.e. almost sterile conditions) increased organic matter
availability, and altered conductivity (Bank et al., 2008; Schaller et al.,
2011; Francioli et al., 2016), undergo rapid changes in their structures
at early stages. In addition, tend to recover the initial structure after
longer incubations (Fig. 1), and quickly converge to similar structures
between treatments (Fig. 2), despite differences in compositional tra-
jectories according to experimental perturbation type.

To evaluate the effect of perturbations at early successional stages,
two conditions were tested: eukaryotic inhibition and pesticide
amendment. Eukaryotic inhibition was attained with the chemical CHX,
which strongly decreases the activity of soil microbial eukaryotes
(Ekelund and Rønn, 1994; Song et al., 2015) thus successfully inhibiting

Fig. 2. Non-metric multidimensional scaling (NMDS) analysis ofMspI-
terminal restriction fragment length polymorphisms (T-RFLP) profiles
for the 16S rRNA bacterial gene, from Calera de Tango soil microcosm
metagenomic DNA, showing the trajectories and grouping of bacterial
communities during successional stages (0.5–300 h). ( ): native, non-
incubated soil ( ): control condition, (●): eukaryotic inhibition
condition, (○): pesticide amended condition. Each symbol corre-
sponds to a single T-RFLP profile. Stress values for each NMDS ana-
lyses are indicated in the upper right corner. Bray-Curtis dissimilarity
matrices were calculated over square root transformed data. R values
for perturbed-control incubations were: A. control and eukaryotic
inhibition, 0.479 (p = 0.003); B. control and pesticide-amended,
0.625 (p= 0.001). Note that the set of control T-RFLP profiles is the
same in A and B.
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bacterivore protozoa in soil (Kota et al., 1999; Manzano et al., 2007;
Badawi et al., 2012). However, it is quite possible that part of the re-
storation process of these bacterial communities is due to a gradual
recovery in biomass and activity of microbial eukaryotes, as CHX is
subjected to degradation during the incubation period (Badalucco et al.,
1994) and CHX does not completely inhibit the entire soil eukaryotic
microbiota (Badawi et al., 2012). Moreover, treatment of soil with CHX
alters the abundance of fungi in soil and consequently affects the bac-
terial community, so it cannot be ruled out that the patterns of change
observed under the influence of CHX are determined by the lack of
interactions between both fungi and bacterial predatory protozoa. Also,
the increase in negative interactions between OTUs under CHX treat-
ment could be explained both by a decrease in mutualistic interactions
between bacteria and fungi and by the increase in competition in the
absence of bacterial predators.

The second condition tested was pesticide amendment. 2,4-D is a
soil pesticide that has been used for decades in the field as an herbicide
(Ahrens, 1994), and its effects on soil are well described (Fulthorpe
et al., 1996; Kraiser et al., 2013). First, 2,4-D is toxic not only for plants,
but also for bacteria because several of its biodegradation intermediates
(2,4-dichlorophenol and 3,5-dichlorocatechol) strongly inhibit meta-
bolism in bacteria (Schweigert et al., 2001; Pérez-Pantoja et al., 2003;
Ledger et al., 2006). Secondly, 2,4-D may also serve as a carbon source
for several bacterial and fungal taxa (Fulthorpe et al., 1996; Vroumsia
et al., 2005). In contrast with the control and biotic perturbation, 2,4-D
treatment elevated positive interactions in the bacterial community.
This change may be explained by the “detoxification effect” (Ledger
et al., 2006) that 2,4-D degrading bacterial populations exert on the

2,4-D sensitive bacterial groups. Microbial consortia degrade 2,4-D and
some of its derivatives, establishing cooperative interactions (Haugland
et al., 1990). Cooperative effects would predominate over the antago-
nist effects established among different 2,4-D-degrading bacterial taxa
when this pesticide is used as an energy and carbon source. Although
2,4-D removal in soils is relatively fast (from hours to days, Manzano
et al., 2007; Kraiser et al., 2013), and bacterial communities can restore
over short time frames, this pesticide and its derivatives have been
shown to cause significant changes in soil bacterial communities both at
the taxonomic and functional levels (Gazitúa et al., 2010).

Both perturbations produced, at early stages, a more restricted set of
community structures, as judged by lower data dispersion and fewer
outliers compared to the control condition (Figs. 1–3). However, de-
spite the differences in both the successional conditions and the tra-
jectories that follow the changes in the community composition, com-
munity structures converge in later stages (48–300 h). Such a
convergence could be related to the persistence of keystone bacterial
assemblages, regardless of the successional condition. While the per-
sistence of keystone OTUs is subject to possible variation in the abun-
dance of the taxa that constitute each OTU, it is possible that changes in
the relative abundances of OTUs have biological relevance, by failing to
ensure that a single taxon is represented in each OTU (Blackwood et al.,
2007). It should therefore be understood that a given OTU keystone
might correspond to conglomerates of non-phylogenetically related
taxonomic groups. To this end, our definition of keystone does not re-
quire that a network node (OTU) be comprised of a single taxa, but
instead as a “betweenness” OTU in the relation of the rest of the OTUs
(Agler et al., 2016). Then, the relationships between the keystones

Fig. 3. Non-metric multidimensional scaling (NMDS) ordination of the beta diversity partition proposed by Baselga et al., 2013, for soil microbial communities. All sampling times from
control, eukaryotic-inhibition, and pesticide-amended treatments are shown in NMDS. Total beta diversity (βsor) at top panel, turnover (βsim) at medium panel and nestedness (βsne)
components at the bottom panel.
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OTUs depend exclusively on the mathematical relationships between
the changes in relative abundances of such OTUs. Using this framework,
our results indicate that the presence of pesticides and the absence of
eukaryotes modulate the way keystones interact. Therefore, plasticity
in keystone interactions could represent a resilient property of bacterial
communities, which allows them to respond to disturbances. In this
way, interaction plasticity would increase the robustness of community
networks (Ramos-Jiliberto et al., 2012), a hypothesis that parallels the
topological plasticity found in mutualistic networks in response to ex-
ternal perturbations in macro-organism communities.

Reports suggest that soil bacterial communities are resistant and
resilient (Girvan et al., 2005; Shade et al., 2012) when faced with a
short-term pulse disturbance such as those described here. Community
restoration begins after a decline in community metrics (i.e. diversity
metrics) proportional to the perturbation effect (Shade et al., 2012).
The resiliency response restores these metrics to pre-disturbance levels,
thus recovering the initial community structure. Results reported here
show that this process occurs very rapidly (less than 24 h). However, we
find that in response to perturbation, bacterial communities feature
states of high and low richness (data not show) and present strong

variations in the community composition, from which a stochastic dy-
namic is inferred during the first stages of succession. Therefore, the
non-linear dynamics that drive the compositional changes in early
bacterial community succession reported here also indicate that sto-
chastic processes are relevant to prime the community for restoration.
This early stochasticity could be explained by the high availability of
carbon at the beginning of the succession (Francioli et al., 2016).
Moreover, similar early stochastic microbial dynamics have been re-
cently proposed in bacterial community succession in pinewood de-
composition (Kielak et al., 2016) and grassland microcosms (Hao et al.,
2015).

Stochastic variations in species composition during early succes-
sional stages could be related to stochastic processes of species turnover
(Francioli et al., 2016; Socolar et al., 2016). However, changes in
community composition reported here, which are attributable to turn-
over processes, clearly distinguish three different phases of early bac-
terial succession based on patterns of species turnover resemblance (see
Fig. 3, βsim graphs). Therefore, some non-stochastic processes must be
operating during early bacterial succession in order to explain the
compositional changes and convergence observed (Fig. 2). A recently

Fig. 4. Line plots showing changes in network parameters for the time series experiment performed with Calera de Tango soil microcosms. A. Network size (number of nodes), B. Average
number of neighbors, C. Average clustering coefficient, and D. Average path length. Scale breaks were added at 24 and 72 h.
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published study shows similar results (Francioli et al., 2016). In both
this case and our work, variations in species composition were related
to both stochastic (turnover) and non-stochastic (niche factors) pro-
cesses. (Fig. 3). Moreover, the present work shows that perturbations do
not affect species turnover processes during succession. Thus, the che-
mical amendments at the beginning of bacterial succession in soil mi-
crocosms affect community composition but not the turnover process
that follow bacterial community succession. Since compositional
change processes operating on bacterial communities do not depend on
the successional condition, interactions between populations represent
more valuable indicators of soil health. In this way, interactions can be
used to explain how the changes in trajectories that follow disturbed
and non-disturbed communities are related to ecological processes and
to the resilience and stability of these communities.

In large-ecosystems, persistent low abundance populations are
considered keystone species while high abundance population are
considered dominant species, but both groups may be ecosystem po-
pulation drivers (Power et al., 1996). However, in the present study,
both low and high abundance OTUs may be keystones or drivers, since
they were identified using the betweenness centrality measure, which is
useful to determine the importance of each interacting OTU in the

bacterial community (Berry and Widler, 2014; Agler et al., 2016).
Under this framework, removal of a keystone species, regardless of its
relative abundance, results in loss of community network stability.
Results present here support the notion that interactions between both
high and low abundance populations are important for maintaining
ecosystem stability (Berlow 1999; McCann, 2000). Therefore, diversity
dynamics, which involve changes in composition and abundance, could
also affect the antagonistic and synergistic trophic interactions between
different members of the resident community (Thébault and Fontaine,
2010). Recently, it has been demonstrated in root-associated bacterial
communities that network variables explain resistance to pathogen
invasion and/or plant health by the underlying interaction network
architecture (Wei et al., 2015). Taken together, these studies show that
network-based models of the dynamics of bacterial communities have
consistently better explanatory power compared with classical diversity
based models such as alpha diversity indices or Bray-Curtis distances.

In summary, our investigation represents the first to consider sam-
pling in the early hours of bacterial community succession in soil. Our
work indicates that the trajectories that follow early changes in bac-
terial community composition and the architecture of the bacterial
community networks are affected by eukaryotic inhibition (i.e. CHX)

Fig. 5. Network diagrams showing core-networks of interactions based on significant positive LV interaction parameters. The nodes size is relational to the betweenness centrality value
obtained from meta-networks (Keystone level). The threshold for positive interaction was> 0.75 (p= 0.01). Only connected components are shown. Black lines indicate positive
influence, and dotted grey lines indicate negative influence. Panels present bacterial succession core-networks at three different levels of persistence percentage (100%: A, D and G;
91.7%: B, E and H; 86.3%: C, F and I). Control, eukaryotic-inhibition, and pesticide-amended (as indicated in the legend of Fig. 2) successions are shown at top (A–C), middle (D–F) and
bottom G–I), respectively.
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and pesticide amendment (i.e. 2,4-D). While these particular dis-
turbances may be representative of those produced by human industrial
activities, we acknowledge that additional experimental conditions
(including longer exposures and different concentrations) must be
tested in order to make generalizations about these compounds. Our
data demonstrate that investigations into bacterial succession should
consider the high degree of temporal variability in their sampling de-
sign and capitalize on the power of studying community networks to
better understand the mechanisms by which communities respond to
the environmental conditions. For example by increasing the antag-
onistic interactions between OTUs in the absence of eukaryotes, while
cooperative interactions increase in the presence of the pesticide.
Finally, studying bacterial community dynamics with a wealth of sta-
tistical tools improves the resolution of ecological phenomena that
operate during BS, and, in turn, can serve to gauge ecosystem stability.
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