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Comparative evaluation of wearable
devices for measuring elevation gain in
mountain physical activities

Raimundo Sánchez and Marcelo Villena

Abstract
The aim of this article is to examine the validity of elevation gain measures in mountain activities, such as hiking and
mountain running, using different wearable devices and post-processing procedures. In particular, a total of 202 efforts
were recorded and evaluated using three standard devices: GPS watch, GPS watch with barometric altimeter, and smart-
phone. A benchmark was based on orthorectified aerial photogrammetric survey conducted by the Chilean Air Force.
All devices presented considerable elevation gain measuring errors, where the barometric device consistently overesti-
mated elevation gain, while the GPS devices consistently underestimated elevation gain. The incorporation of secondary
information in the post-processing can substantially improve the elevation gain measuring accuracy independently of the
device and altitude measuring technology, reducing the error from 25% to 21%. These results could help coaches and
athletes correct elevation gain estimations using the proposed technique, which would serve as better estimates of phys-
ical workload in mountain physical activities.
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Introduction

Measuring the performance of an outdoor physical
activity is a very complex task due to the large number
of factors involved. Nowadays, mountain sport activi-
ties are becoming increasingly popular among profes-
sional and amateur athletes. As studied exhaustively by
Kay,1 the physical workload of a mountain activity will
vary according to the horizontal distance covered and
the elevation gain (EG). The most common estimation
method for physical workload is the Naismith formula
derived by Scarf,2 which states that 1 km of horizontal
effort is equivalent to 125-m EG for men and 100-m
EG for women, which makes EG a key measure for
estimating physical workload in mountain activities.

Mountain sport activities usually take place on
mountain trails, which constantly vary in grade, ter-
rain, and weather conditions. In this context, the speeds
reported within a circuit will account not only for an
individual athlete’s fitness but also for the particular
terrain topology.3 In the mountains, it is common to
find obstacles, such as rocks and roots, making it
impossible to use standard road measuring tools like
the wheel-based jones meter, which is the International

Association of Athletics Federations (IAAF) standard
for measuring distances in road running. Furthermore,
wheel-based tools do not measure EG. Therefore, the
best option for measuring outdoor circuits and activi-
ties is GPS devices.

The massification of portable devices has given ath-
letes access to more information on their training. The
errors generated by these devices can induce subopti-
mal strategies when planning or performing physical
activities. For example, recently, Hongu et al.4 exam-
ined the validity of energy expenditure (EE) measured
using four different GPS watches. The research found
that the GPS watches demonstrated lower reliability
across trials for assessing overall EE when compared
with a triaxial accelerometer. On the other hand, Beato
et al.5 found that GPS devices did not underestimate
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distance or peak speed when configured at 10Hz, but
standard wearable GPS devices operate at a maximum
of 1Hz.6

In particular, for measuring EG, studies have shown
that measurements of altitude and EG differ consider-
ably between device technology, device settings, and
data post-processing methods.7–10 Ammann et al.6

studied the accuracy of EG measurement in GPS sport
watches during road running on a 7% grade segment.
They found that algorithmic procedures implemented
by watch manufacturers worsened the EG estimation
considerably for all brands, suggesting that standard
filtering methods for road running11 may not be appro-
priate for running off-road. Another study12 showed
that wearing the devices on the hip can significantly
reduce the arm swing-related EG error, which can over-
estimate physical workload up to 5%. Some specialized
sport watches include barometric altimeter, which is an
alternative technology for measuring altitude under sta-
ble weather. Some studies show that unstable climates
can increase the EG measuring error in barometric alti-
meters by fivefold, creating up to a 25% deviation from
known values.13

On the other hand, the incorporation of secondary
information in the post-processing can substantially
improve the EG measuring accuracy. Menaspà et al.8

claim that the use of the Garmin altitude correction
option resulted in a 5% to 10% increase in the total
EG, although there was no documented method for
how this correction was conducted by the
manufacturer.

The aim of this article is to examine the validity of
EG measures using different wearable devices and post-
processing procedures for mountain physical activities.
EG is a key measure to estimating physical workload in
outdoor activities, such as hiking, mountain biking, or
mountain running. To the authors’ knowledge, there is
no published study on the validity of EG measures dur-
ing physical activities in mountain settings.

Methods

Experimental approach to the problem

A retrospective observational study was performed in a
well-established mountain segment (Manquehue Hill)
in Santiago, Chile, consisting of 386m of EG through
906m of horizontal distance. These measures were
obtained from an orthorectified aerial photogrammetric
survey, conducted in Santiago, Chile, in 2004 by the
Chilean Aero Photogrammetric Service (www.saf.cl/), a
subsidiary of the Chilean Air Force. The course is free
of trees or other signal obstructions and has an average
grade of 42%, increasing by six times the maximum
grade covered by previous EG estimation studies.

The data were registered by the authors on 202 dif-
ferent efforts, recorded in 116 unique field activities
between 8 December 2014 and 27 July 2019. In each
effort, a unique GPS trajectory was recorded with the

following data obtained for each trajectory reading:
coordinate pairs, timestamps, and raw altitude estima-
tion. Sometimes, more than one effort was recorded on
the same day. In total, 84 climbs and 118 descents were
recorded, and the total time spent covering the route
ranged from 8.9 to 55.6min, with a mean of 20min.
There is a difference between the number of ascents
and descents because 34 activities were recorded climb-
ing the hill through an alternative route and descending
through the analyzed segment.

A total of three different devices were used: (a)
Smartphone with GPS (iPhone 6SE), (b) GPS watch
(Garmin Forerunner 225), and (c) GPS watch with
barometric altimeter (Garmin Fenix 5). The GPS watch
with barometric altimeter is the most developed of the
studied devices, being released in 2017. This device was
used for all efforts measured in this study during 2019.
Specifically, 65 efforts recorded with the smartphone,
which was worn 23% of the time on the hip and the
rest of the times on the arm, 114 efforts recorded with
the GPS watch, and 23 efforts recorded with the GPS
watch with barometric altimeter.

The variance in device settings resulted in a number
of readings during an effort, ranging from 65 to 636.
During 8.9% of the efforts, the ‘‘ultra-saving’’ mode
was used to record the data, which uses low sampling
recording to optimize battery life, a common setting in
ultra-running activities.

GPS tracking software measures the total EG of an
effort by calculating the EG between every two readings
and then adding these, and does the same for estimating
horizontal distance. These EG and distance calculations
were applied for every effort recorded for all devices.
Finally, speed was calculated by dividing horizontal dis-
tance by time difference.

The percentage error of each effort’s horizontal dis-
tance and EG was then calculated relative to the bench-
mark measure. Percentage error was used instead of
absolute percentage error since the error sign is also a
variable of interest in this study.

Data were enriched with weather information after
the gathering process. Hourly historical weather data
for Santiago, Chile, were obtained from Apixu
(Apixu.com) with the following ranges: temperatures
5.1 �C–30.8 �C, humidity 11%–75%, precipitation 0
and 15mm, and daylight and cloud presence between 0
and 1.

Description of all the variables is presented in Table 1,
and descriptive statistics are presented as quartiles, mean,
and standard deviation in Table 2.

Statistical procedures

Two different statistical approaches were carried out.
First, an analysis of the descriptive statistics of EG and
horizontal distance errors was conducted. Within this
approach, a distributional analysis of errors was con-
ducted. As part of this process, the coefficient of varia-
tion of the errors for every device under research was
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calculated. Second, following Ammann et al.,6 linear
regression models were performed to measure the deter-
minants of EG and horizontal distance estimation
errors. The aim was to relate the dependent variables,
distance error, and EG error, with the following inde-
pendent variables: device type (smartphone, GPS, or
barometer), arm swing (yes or no), speed, weather con-
ditions (humidity, cloud, precipitation, and tempera-
ture), daylight, average distance between readings, and
battery-saving option (yes or no). After performing this
regression, the variables without statistically significant
coefficients were removed, and a second regression was
performed, only with the selected variables, expecting
to maintain explanatory power while simplifying the
model.

Before performing the regression, a correlation anal-
ysis was done to the independent variables to under-
stand if linear model assumptions were being met. In
case of highly correlated variables, the redundant vari-
able were dropped, maintaining the variable that
accounted for the maximum explanatory power.
Finally, ordinary least squares (OLS) regression was
performed with the resulting independent variables.

Post-processing procedures

In addition to studying the accuracy in raw EG, the
EG was measured after applying two different post-
processing procedures, an algorithmic approach and an
altitude correction approach with an external source,
following previous studies.6,8

Most sports tracking software applies smoothing
algorithms for correcting GPS trajectories,11 but manu-
facturers do not disclose their filtering algorithms. For
this study, the filtering algorithms described by
Schuessler and Axhausen11 were implemented, using a
Gaussian kernel. For each coordinate dimension, the
smoothed value at each time was computed using a ker-
nel bandwidth of 10 s, and then the EG and horizontal
distance over smoothed coordinates was calculated.

For altitude correction with external sources, a
locally enhanced digital elevation model (DEM) based
on NASA’s Shuttle Radar Topography Mission
(SRTM) data was used, which is available for anybody
to use at Amazon Web Services (https://registry.open-
data.aws/terrain-tiles/). The SRTM data were also used
by previous studies9 for altitude reference in road
cycling EG estimation. The DEM returns an altitude
value for any given latitude and longitude, so this
DEM altitude value was calculated for every coordi-
nate pair recorded in the present study, and then EG
and EG error was computed.

Table 2. Descriptive statistics of numeric variables.

Minimum 1st quartile Median Mean 3rd quartile Maximum Standard deviation

Distance (m) 685 886 897 886 913 948 53
EG (m) 276 357 359 366 376 402 16
Up or down (bin) 0.00 0.00 0.00 0.41 1.00 1.00 0.99
Readings (#) 65 123 172 203 283 636 112
Arm swing (bin) 0.00 1.00 1.00 0.77 1.00 1.00 0.42
Barometer (bin) 0.00 0.00 0.00 0.11 0.00 1.00 0.31
Smartphone (bin) 0.00 0.00 0.00 0.30 1.00 1.00 0.46
Is day (bin) 0.00 0.00 1.00 0.72 1.00 1.00 0.44
Cloud (%) 0 0 2 12 12 100 23
Precipitation (mm) 0.00 0.00 0.00 0.08 0.00 9.46 0.79
Speed (m/s) 0.26 0.60 0.75 0.84 1.16 1.69 0.32
Humidity (%) 11 22 29 33 42 75 14
Temp (�C) 5.1 12.4 16.0 16.2 20.0 30.8 5.5
Average distance (m) 1.3 3.1 5.4 5.7 7.4 13.6 2.9
Ultra-saving (bin) 0.00 0.00 0.00 0.09 0.00 1.00 0.28

EG: elevation gain.

The expression (bin) stands for binary variables (1 if yes or 0 if no).

Table 1. Variable descriptions.

Variable Description

Distance Horizontal distance in meters
EG Elevation gain in meters
Distance error Percentage horizontal distance error

versus benchmark
EG error Percentage EG error versus benchmark
Up or down 1 if effort was uphill, 0 if downhill
Readings # of GPS readings for that effort
Arm swing 1 if device was worn on arm, 0 if not
Barometer 1 if device measures elevation with

barometer, 0 if GPS
Smartphone 1 if was smartphone, 0 if wrist watch
Is day 1 if day, 0 if night
Cloud Cloud cover as percentage
Precipitation Precipitation amount in millimeters
Speed Horizontal distance over time
Humidity Humidity as percentage
Temp Temperature in Celsius
Average distance Horizontal distance between readings
Ultra-saving 1 if ultra-saving setting, 0 if normal

EG: elevation gain.
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A fourth EG estimation was obtained by applying
both processes, first applying Gaussian filtering to lati-
tude and longitude, and then obtaining altitude from
the DEM for smoothed coordinates. Therefore, four
different datasets were generated, so the variance in EG
estimation was analyzed with treatment-specific and
device-specific box-plots.

The data gathering, processing, and statistical analy-
sis were performed in R language, with both data and
scripts freely available upon request.

Results

A total of 202 efforts of mountain hiking on a well-
established trail in Santiago, Chile, were analyzed. All
devices presented EG measuring errors, although the
barometric device tended to overestimate EG with a
mean EG error of 36 4%, while GPS devices tended to
underestimate EG with mean values of 266 3% and
276 4% for the GPS watch and smartphone, respec-
tively. Horizontal distance error is also reported, hav-
ing a mean value of 226 6% for all devices, closer to
0 than EG error, but with higher variance.

In Table 3, the distributions of EG error and dis-
tance error by device are presented. From these distri-
butions, it is clear that all three devices presented
considerable EG measuring errors. However, in mean
distance error, standard GPS and smartphones present
close to zero distributions, with distance error of
06 2% and 216 4%, respectively. The poorest perfor-
mance on distance error was by the barometric device,
but this was the only device with the ultra-saving set-
ting, lowering the resolution of the recorded trajectories
(important numbers are highlighted in bold in Table 3).

Figure 1 shows that there is high correlation in the
data, and several variables are identified with high val-
ues, such as up or down and speed, since the downhill
speed is much higher than that in uphill. There is also a

strong correlation between barometer and ultra-saving,
since the Garmin Fenix 5 device is the only device with
a barometer and the only one that can be used in ultra-
saving mode. Average distance also stands out as highly
correlated with the number of readings since the first
equals the segment distance divided by the latter.

For each dependent variable, EG error and distance
error, two different linear models, were estimated: with
all available independent variables; and only using the
variables with statistically significant coefficients. The
normalized coefficients for the four linear regressions
are reported in Table 4, as well as regression statistics.
The explanatory power of models with all variables is
preserved in the models with selected variables, as can
be seen in the adjusted R2 reported at the bottom of
Table 4. In EG error, this value marginally decreased
from 0.55 to 0.54, while for distance error, this value

Table 3. Descriptive statistics of EG, distance, EG error, and distance error.

Variable Device Mean Standard
deviation

Minimum Maximum Coefficient of
variation (%)

EG (m) Smartphone 359 18 265 387 5
GPS watch w/barometer 396 4 384 402 1
Standard GPS watch 363 11 330 386 3

EG error (%) Smartphone 27% 5% 231% 0% 269
GPS watch w/barometer 3% 1% 21% 4% 45
Standard GPS watch 26% 3% 214% 0% 249

Distance (m) Smartphone 898 32 686 943 4
GPS watch w/barometer 761 68 696 893 9
Standard GPS watch 903 18 866 948 2

Distance error (%) Smartphone 21% 4% 224% 4% 2391
GPS watch w/barometer 216% 7% 223% 22% 246
Standard GPS watch 0% 2% 24% 5% 2552

EG: elevation gain.

Since error measures are defined as a percentage, then the descriptive statistics for these variables are also reflected in this unit. Coefficient of

variation is calculated as the standard deviation, divided by the mean.

Figure 1. Independent variable correlations. The expression
(bin) stands for binary variables (1 if yes or 0 if no).
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marginally decreased from 0.57 to 0.56. For both vari-
ables, the second model avoided spurious relations,
since all selected variables are statistically significant to
at least 99% confidence.

In the case of EG models, it can be seen in Table 4
that unlike horizontal distance, the intercept is statisti-
cally significant. This means that the model will always
expect to have a measurement error in EG, unlike hori-
zontal distance with a 0% error expected according to
the model. The variables readings, arm swing, and
smartphone were found to be statistically significant
for explaining both errors, while precipitation, average
distance, and ultra-saving were relevant for explaining
EG error. Cloud, speed, and temperature were relevant
for explaining distance error.

The number of readings presents a wide range and
standard deviation as seen in Table 2, which given the
fractal nature of geographical trajectories, should influ-
ence distance measurements. This effect is also reflected
in the average distance between readings. The average
distance between measurements is within the mountain

racing standards of 10m for segment recording,14 show-
ing that this setting is not enough to minimize EG esti-
mation error.

By applying the altitude correction method described
in the ‘‘Methods’’ section, the EG error patterns are
drastically modified, shifting the distribution closer to
0% and reducing the variance as can be seen in Figure
2. It can also be seen that by applying the smoothing
algorithm, the EG errors patterns are slightly modified,
reducing its variance, but the average error did not
shift. When applying both methods, all devices report
larger EG errors than applying only altitude correction.
In the case of the Garmin Fenix with both methods, the
distribution worsens atypically. This can be explained
by the ultra-saving mode, only available for this device.
This mode reduces the GPS sampling rate, resulting in
low-resolution GPS tracks. Applying a smoothing algo-
rithm to coordinates of a low resolution GPS track
results in distorted trajectories, so the subsequent EG
calculation will depend on the distorted trajectory’s ele-
vation profile.

Table 4. Regression analysis results for EG error and distance error, using all available variables (all variables) and selecting only
statistically significant variables (selected variables).

EG error (%) Distance error (%)

Independent variable All variables Selected variables All variables Selected variables

Up or down (bin) 20.36 21.61** 21.25**
(0.38) (0.67) (0.56)

Readings (#) 3.09*** 3.05*** 7.49*** 5.89***
(0.61) (0.44) (1.08) (0.53)

Arm swing (bin) 2.69*** 2.73*** 2.41*** 2.73***
(0.42) (0.41) (0.74) (0.70)

Barometer (bin) 1.00 21.40
(0.61) (1.09)

Smartphone (bin) 1.76*** 1.56*** 2.23*** 2.55***
(0.46) (0.44) (0.83) (0.73)

Is day (bin) 0.39 0.83*
(0.28) (0.49)

Cloud (%) 20.03 21.25** 21.44***
(0.27) (0.49) (0.44)

Precipitation (mm) 20.49** 20.53** 0.53
(0.23) (0.23) (0.41)

Speed (m/s) 20.02 21.47** 21.60***
(0.34) (0.61) (0.58)

Humidity (%) 20.21 20.72
(0.30) (0.53)

Temp (C�) 0.06 21.38** 20.79**
(0.31) (0.56) (0.40)

Average distance (m) 2.42*** 2.14*** 1.47
(0.63) (0.48) (1.12)

Ultra-saving (bin) 2.12*** 2.76*** 2.01*
(0.65) (0.23) (1.15)

Intercept 20.05*** 20.54*** 0.01 0.04
(0.02) (0.02) (0.05) (0.02)

N 202 202 202 202
Adjusted R2 0.55 0.54 0.57 0.56
F 19.5 40.2 21.1 37.3

EG: elevation gain.

For each independent variable and model, the values of standardized coefficient and standard deviation (in parentheses) are reported, along with the

codes for statistical significance (*p \ 0.05, **p \ 0.01, ***p \ 0.001). Sample size, adjusted R2, and Fisher score for each model are also

reported at the bottom of the table.
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EG errors with altitude correction fluctuate around
0, so it can be assumed that the source of the DEM,
based on the SRTM, is a source of elevation that closely
resembles the actual elevations in absence of signal
obstructions.

EG measuring error in a mountain setting can be
drastically reduced by applying an altitude correction
approach. Altitude correction generates consistent esti-
mation through all devices in this study, despite the
measuring technology.

Discussion

This study determined the accuracy of devices and pro-
cedures typically used for EG measuring and estimation
in mountain running.

In general, considering raw measures of EG, specia-
lized barometric devices showed the most accurate EG
reading, as was expected. On the other hand, GPS
devices are more ubiquitous, but reported EG error
magnitude up to 15%. For a GPS device to deliver
quality elevation measurements, some conditions must
be met, like clear view to at least four satellites,15 while
a barometric altimeter just requires stable weather.

The study showed that measurement errors from
both types of technology can be mitigated through
post-processing procedures. Altitude correction was
found to be the best data procedure in reducing the EG
error, allowing low-cost GPS devices to obtain similar
quality in EG estimation compared to the more expen-
sive and sophisticated barometric devices. Previous
studies found that EG differs considerably between
devices8,12 and that non-disclosed altitude correction
reduces the variance of EG measures in road cycling.
Commercial applications, like Garmin Connect or
Strava, correct altitude based on a proprietary DEM,
so EG measures will differ depending on the

application on which the data were processed. The
main value of using an open-source DEM is that esti-
mates can be homologated and compared across
devices.

Ammann et al.12 state that a 5% error in EG has
significant impact on mountain running workload.
Mean EG errors reported in this study, averaging 5%,
are in line with published results for road cycling13 and
road running.6 This magnitude suggests that altitude
correction procedure should always be applied to avoid
suboptimal strategies when planning or performing
physical activities in the mountains.

The total EG error of a GPS track results from the
sum of each segment EG bias, and this segment EG
bias between two consecutive readings is affected by
several factors, such as weather or the relative position
of the device.6,8,12,13 A recent study6 found that wet
conditions considerably heightened EG error to 25%,
which is consistent with the results of the best model for
EG error, where precipitation and humidity were found
to be statistically significant variables for estimating
EG and horizontal distance within the dataset, as can
be seen in Table 4. This suggests that weather condi-
tions affect not only the vertical component of physical
workload estimation but also the horizontal compo-
nent. Given the nature of the present study, some of the
conclusions are irreproducible, so further research
should validate these results with larger datasets.

In Table 4, arm swing is found to be statistically sig-
nificant for EG estimation, as was anticipated,12 and
also had an effect on horizontal distance estimation.
These statistically significant variables should be taken
into further consideration when defining recording pro-
tocols for registering mountain circuits with portable
devices.

The EG error is estimated upon the measured loca-
tion and, therefore, also depends on location measuring

Figure 2. EG error for every device and procedure. Devices analyzed were a smartphone, a Garmin Forerunner 225 GPS Watch
(FR225), and Garmin Fenix 5S GPS Watch. The different procedures tested were Gaussian smoothing, digital elevation model
(DEM), Gaussian smoothing and DEM, and the raw EG measurement error.
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accuracy.7 Studying position accuracy in a mountain
setting requires a different experimental design, so fur-
ther research will address this issue for the available
devices.

In mountain pedestrianism, unlike road, track, or
treadmill settings, there is a great variation in stride and
angle of foot strike with every step, so additional infor-
mation about the terrain could explain the errors unac-
counted for by the present study.

Applying the described smoothing algorithm
decreases the accuracy of the results, as anticipated by
a previous study.13 Future research should consider
testing different filtering algorithms to see if any algo-
rithmic approach outperforms altitude correction
methods.

Another important limitation of this study is that
only three types of devices were tested. Other devices
may exhibit different EG error patterns and the contin-
uous development of wearable technology will require
updating results in the future.

None of the existing studies focus on identifying the
optimal scale for EG analysis. Since the selected DEM
provides a detailed source of information with a rea-
sonable degree of accuracy, further studies will focus
on comparing the accuracy for different section lengths
of mountain trail.

To engage in safer physical activities, it is essential
for mountain athletes to have the best information
available, including the correct horizontal distances
and EG. Poor or inaccurate information could generate
risks to both the performance, as well as the integrity
of the athletes’ achievements. This is especially true for
countries such as Chile, where mountain sports activi-
ties are an important part of the population’s physical
activity with 64% of the national territory covered by
mountains.

Conclusion

Raw and post-processed estimations of EG were com-
pared to the reference data to understand EG estima-
tion error and how to mitigate this error while planning
or performing physical activities in a mountain setting.
Given the relative ease of correcting wearable device
altitude readings with DEM values, this procedure is
the best practice to obtain across-device consistent mea-
sures of EG.

These results will help coaches and athletes to access
quality and consistent measures of EG, allowing for
more accurate estimates of physical workload in moun-
tain activities, independent of the recording device tech-
nology. These results will also help portable device
manufacturers, so they can determine more effective
ways to obtain quality EG measures.
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